K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)

Thế y=\(\frac{-2x}{5}\) ta được:

x+\(\frac{-2x}{5}\)=30     \(\Rightarrow\frac{5x-2x}{5}=30\)

\(\Rightarrow3x=150\)\(\Rightarrow x=50\)

=>y=30-x=30-50=-20.

Vậy x=50; y=-20.

Những bài khác tương tự bạn nhé!

5 tháng 11 2017

bạn kia làm đúng rồi

k tui nha 

thank

12 tháng 10 2019

2x = 5y 10z là sao ? Thiếu dấu ''='' à ?

12 tháng 10 2019

sửa chỗ 2x = 5y = 10z nhé 

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

25 tháng 6 2018

\(\hept{\begin{cases}3x=2y\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}.x\\2x+\frac{3}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{3}{2}.x\\\frac{7}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{6}{7}\\y=\frac{9}{7}\end{cases}}}\)

\(\hept{\begin{cases}\frac{x}{3}=\frac{3y}{4}\\3x-y=4\end{cases}\Leftrightarrow\hept{\begin{cases}4x=9y\\3x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9y}{4}\\\frac{3.9}{4}y-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\\frac{23}{4}.y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\y=\frac{16}{23}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{36}{23}\\y=\frac{16}{23}\end{cases}}}\)

Các phần sau làm tương tự nhé

18 tháng 7 2017

1/ Ta có: -2x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+\left(-2\right)}=\dfrac{30}{3}=10\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=10\\\dfrac{y}{-2}=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.\left(-2\right)-20\end{matrix}\right.\)

Vậy x = 50; y = -20.

2/ Ta có: 3x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{3}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)

Vậy x = 25; y = 15.

3/ Ta có: 4x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)

Vậy x = 25; y = 20.

4/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=1\\\dfrac{y}{-5}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)

Vậy x = 2; y = -5.

5/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)

Vậy x = 38; y = 42.

18 tháng 7 2017

\(-2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+-2}=\dfrac{30}{3}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.-2=-20\end{matrix}\right.\)

\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\Rightarrow\dfrac{3x}{15}=\dfrac{2y}{8}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)

\(x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.2=2\\y=1.\left(-5\right)=-5\end{matrix}\right.\)

\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)