Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-y}{x+y}=\dfrac{3}{7}\)
\(\Leftrightarrow7x-7y=3x+3y\)
=>4x=10y
=>2x=5y
hay x/5=y/2
Đặt x/5=y/2=k
=>x=5k; y=2k
\(x^2y^2=1600\)
\(\Leftrightarrow10k^2=1600\)
\(\Leftrightarrow k^2=160\)
TH1: \(k=4\sqrt{10}\)
\(x=20\sqrt{10};y=8\sqrt{10}\)
TH2: \(k=-4\sqrt{10}\)
\(x=-20\sqrt{10};y=-8\sqrt{10}\)
|x-10|+|x-11|+|x-12|+|x-13|=4
=>|x-10|+|x-13|+|x-11|+|x-12|=4
=>|x-10|+|13-x|+|x-11|+|12-x|=4
Ta có: |x-10|+|x-13|+|x-11|+|x-12|>=3+1=4(Bất đẳng thức giá trị tuyệt đối)
DBXRK 11<=x<=12=>x=11 hoặc x=12
Vậy x=11 hoặc x=12
a) \(x\)=1 \(y\)= 12
b)\(x\)=4 \(y\)= 14
hoặc \(x\)= 6 \(y \)=21
...
Lời giải:
\(\frac{x-y}{x+y}=\frac{3}{7}\Rightarrow 7(x-y)=3(x+y)\)
\(\Leftrightarrow 4x=10y\Rightarrow y=0,4x\)
Lại có: \(x^3y^3=1000\Leftrightarrow (xy)^3=1000\Rightarrow xy=\sqrt[3]{1000}=10\)
Thay \(y=0,4x\) ta có:
\(x.0,4x=10\Leftrightarrow x^2=25\Rightarrow x=\pm 5\)
Nếu \(x=5\rightarrow y=0,4x=2\)
Nếu \(x=-5\rightarrow y=0,4x=-2\)
ta có x^3.y^3=(x.y)^3=1000
<=>(x.y)^3=10^3
<=>x.y=10
ta có (x-y)/(x+y)=3/7 <=> 7x-7y=3x+3y
<=> 4x=10y
<=>x=y.5/2
thay x= y.5/2 vào x.y=10 ta có:
y.5/2.y=10
<=>y^2=4
<=>y=2 hoặc y=-2
với y=2 ta có x=5, với y=-2 ta có x=-5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}=\dfrac{\left(y^2-x^2\right)-\left(y^2+x^2\right)}{3+5}=\dfrac{\left(y^2-x^2\right)-\left(y^2-x^2\right)}{3-5}\Rightarrow\dfrac{2y^2}{8}=\dfrac{-2x^2}{-2}\Rightarrow\dfrac{y^2}{4}=x^2\Rightarrow y^2=4x^2\)
Ta có: \(x^{10}.y^{10}=x^{10}.\left(4x^2\right)^5=1024.x^{20}=1024\Rightarrow x^{20}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(\Rightarrow y^2=4\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
Vậy \(x\in\left\{1;-1\right\}\) và \(y\in\left\{4;-4\right\}\)
\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}\)
\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(y^2+x^2\right)\)
\(\Leftrightarrow5y^2-5x^2=3y^2+3x^2\)
\(\Leftrightarrow2y^2=8x^2\)
\(\Leftrightarrow y^2=4x^2\)
\(\Leftrightarrow y^{10}=1024.x^{10}\)
Mà \(x^{10}.y^{10}=1024\)
\(\Leftrightarrow x^{10}.1024x^{10}=1024\)
\(\Leftrightarrow x^{20}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
+)Với \(x=1\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
+) Với \(x=-1\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy...