K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

2^x= 4^(y-1) 
<=> 1^x = 2^(y-1) 
<=> 1=2(y-1) Để 2^(y-1) bằng 1 thì 2^(y-1) phải là bậc 0 nên y=1, cho dù x là số nào đi chăng nữa thì đề vẫn thoả mãn 

27^y= 3^(x+8) 
<=> 9^y = 1^(x+8) 
<=> 9^y = 1. Để 9^y bằng 1 thì 9^y phải là bậc 0 nên y=0, còn x là số nào đi nữa thì đề vẫn thoả mãn 
Vậy đề này theo mình là tìm y chứ không phải tìm x đâu bạn2^x= 4^(y-1) 
<=> 1^x = 2^(y-1) 
<=> 1=2(y-1) Để 2^(y-1) bằng 1 thì 2^(y-1) phải là bậc 0 nên y=1, cho dù x là số nào đi chăng nữa thì đề vẫn thoả mãn 

27^y= 3^(x+8) 
<=> 9^y = 1^(x+8) 
<=> 9^y = 1. Để 9^y bằng 1 thì 9^y phải là bậc 0 nên y=0, còn x là số nào đi nữa thì đề vẫn thoả mãn 
Vậy đề này theo mình là tìm y chứ không phải tìm x đâu bạn

29 tháng 6 2015

nhầm, sorry:

a) 10x : 5y = 20y

=> 10x  = 20. 5y

=> 10x = 100y

=> 10x = (102)y

=> x = 2y

13 tháng 7 2015

a, \(2^{x+1}.3^y=12^x\Rightarrow2^{x+1}.3^y=3^x.4^x\Rightarrow2^{x+1}.3^y=2^{2x}.3^x\)

=> x + 1 = 2x  ; y = x

=> x = 1 ; y = x = 1

b, \(10^x:5^y=20^y\Rightarrow2^x.5^x:5^y=4^y.5^y\Rightarrow2^x.5^{x-y}=2^{2y}.5^y\)

=> x = 2y ; x- y  = y => x = 2y 

VẬy mọi số tự nhiên x,y đều thỏa mãn miễn x = 2y ( thử xem)

c, \(2^x=4^{y-1}\Rightarrow2^x=2^{2\left(y-1\right)}\Rightarrow x=2\left(y-1\right)\Rightarrow x=2y-2\)

\(27^y=3^{x+8}\Rightarrow3^{3y}=3^{x+8}\Rightarrow3y=x+8\Rightarrow3y=2y-2+6\)

=> 2y + 4 = 3y => y = 4 ; 

x = 2.4 - 2 = 6 

 

 

   

13 tháng 7 2015

tặng thang tran 3 **** về sự cần cù

11 tháng 11 2016

a) Từ đề bài suy ra

2^x+1.3^y=(3.2^2)^x

2^x+1.3^y=3^x.(2^2)^x.Vì cách phân tích là duy nhất.

2^x+1=2^2x và 3^y=3^x

x+1=2x;y=x

x=y=1

 

11 tháng 11 2016

b) 10^x:5^y=20^y

10^x =20^y.5^y

10^x = (20.5)^y

10^x = 100^y

10^x = 10^2y

x = 2y

Vậy x= 2y

6 tháng 11 2018

\(2^{x+1}.3^y=12^x\)

\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)

\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)

\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

3 tháng 5 2020

Shbh=a x h= 48 x (48 x \(\frac{1}{3}\) ) =768 (cm2 )

3 tháng 5 2020

1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)

Vì \(\left(3x-5\right)^{2010}\ge0\forall x\)\(\left(y-1\right)^{2012}\ge0\forall y\)\(\left(x-z\right)^{2014}\ge0\forall x,z\)

\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)

Vậy \(x=z=\frac{5}{3}\)và \(y=1\) 

12 tháng 7 2019

 Ta có: P = 2(x + y6) - 3(x4 + y4)

 P = 2(x2 + y2)(x4 - x2y2 + y4) - 3x4 - 3y4

P = 2.1.(x4 - x2y2 + y4) - 3x4 - 3y4

P = 2x4 - 2x2y2 + 2y4 - 3x4 - 3y4

P = (2x4 - 3x4) - 2x2y2 + (2y4 - 3y4)

P = -x4 - 2x2y2 - y4

P = -(x4 + 2x2y2 + y4)

P = -(x2 + y2)2

P = -12 = -1

=> Biểu thức P ko phụ thuộc vào x với x2 + y2 = 1