K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2015

x^2 + 3xy + 2y^2 =  0 

=> x^2 + xy + 2xy + 2y^2 = 0 

=> x(x+y) + 2y ( x+  y ) = 0 =

=> ( x+  2y)( x + y ) = 0 

=> x = -2y hoặc x = -y 

(+) x = -2y thay vào ta có :

 8y^2 + 6y + 5 = 0 giải ra y => x 

(+) thay x = -y ta có :

2y^2 - 3y + 5 = 0 tương tự 

30 tháng 8 2015

Nguyễn Đình Dũng tục tỉu thế

16 tháng 2 2021

\(x^2-\left(2007+y\right)x+3+y=0\)

\(\Leftrightarrow x^2-2007x-xy+3+y=0\)

\(\Leftrightarrow x^2-x-2006x+2006-xy+y=2003\)

\(\Leftrightarrow x\left(x-1\right)-2006\left(x-1\right)-y\left(x-1\right)=2003\)

\(\Leftrightarrow\left(x-1\right)\left(x-2006-y\right)=2003\)

Do x;y là số nguyên nên x-1 là ước của 2003, 2003 là số nguyên tố nên ta có \(x-1=\left\{-2003;-1;1;2003\right\}\)

\(\Rightarrow x=\left\{-2002;0;2;2004\right\}\)

Với x=-2002 thì -2002-2006-y=-1 => y=-4007

Với x=0 thì 0-2006-y=-2003 => y=-3

Với x=2 thì 2-2006-y=2003 => y=-4007

Với x=2004 thì 2004-2006-y=1 => y=-3

Vậy các cặp số nguyên (x;y) cần tìm là (-2002;-4007);(-2;-4007);(0;-3);(2004;-3)

17 tháng 2 2021

\(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)0

\(< =>\left(x^2+2xy+y^2\right)+7\left(x+y\right)+y^2+10=0\)

\(< =>\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

Đặt a=x+y ta có

\(a^2+7a+10+y^2=0\)

\(< =>a^2+7a+\frac{49}{4}-\frac{9}{4}+y^2=0\)

\(< =>\left(a+\frac{7}{2}\right)^2+y^2=\frac{9}{4}\)

Vì \(\frac{9}{4}\)=\(0+\frac{9}{4}\)và \(a+\frac{7}{2}>=y\)nên \(\hept{\begin{cases}x+y+\frac{7}{2}=\frac{3}{2}\\y=0\end{cases}}\)\(=>\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

4 tháng 11 2017

\(x^3+y^3=x^2+42xy+y^2.\)

\(\Leftrightarrow\left(x+y\right).\left(x^2-xy+y^2\right)=x^2-xy+y^2+43xy\)

\(\Leftrightarrow43xy=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)

4 tháng 11 2017

 x^3-y^3-((x-y)*(x^2+x*y+y^2))=0