\(^{x^2+y^2-2x+4y+5=0}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

Ta thấy: \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Do đó: \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\). Vậy ...

12 tháng 8 2018

<=>(x2+y2+z2+2xy+2yz+2xz)+(x2+2x+1)+(y2+4y+4)=0

<=>(x+y+z)2+(x+1)2+(y+2)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2\ge0}\)

=>\(\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}}\)

10 tháng 9 2019

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #

27 tháng 6 2018

a. \(x^2+4y^2+z^2=2x+12y-4z-14\)

\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)

6 tháng 8 2020

a) \(x^2+4y^2-6x-4y+10=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)

b) \(2x^2+y^2+2xy-10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) \(x^2+2xy+4x-4y-2xy+5=0\)

\(\Leftrightarrow x^2-4x-4y+5=0\)

Xem lại đề câu c).

6 tháng 8 2020

a) x2 + 4y2 - 6x - 4y + 10 = 0

<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0

<=> ( x - 3 )2 + ( 4y - 1 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)

b) 2x2 + y2 + 2xy - 10x + 25 = 0

<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0

<=> ( x + y )2 + ( x - 5 )2 = 0

<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) Xem lại đề 

11 tháng 6 2016

a) Ta có \(x^2+y^2+2x-4y+5=0\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)=0\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2=0\)

<=> x=-1;y=2

b)Ta có:\(x^2+4y^2-x+4y+\frac{5}{4}=0\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\left(4y^2+4y+1\right)=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(2y+1\right)^2=0\)

<=> x=1/2 ;y=-1/2

11 tháng 6 2016

a, \(x^2+y^2+2x-4y+5=0\Rightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)=0.\)

    \(\left(x+1\right)^2+\left(y-2\right)^2=0\)

   \(\Rightarrow x+1=0\)và \(y-2=0\)

\(\left(+\right)x+1=0\Rightarrow x=-1\)

\(\left(+\right)y-2=0\Rightarrow y=2\)

Vậy x=-1 ; y=2 

b, \(x^2+4y^2-x+4y+\frac{5}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(4y^2+4y+\frac{4}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(2y+1\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\) và \(2y+1=0\)

\(\left(+\right)x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

\(\left(+\right)2y+1=0\Rightarrow2y=-1\Rightarrow y=-\frac{1}{2}\)

Vậy \(x=\frac{1}{2};y=-\frac{1}{2}\)

8 tháng 10 2018

(x2-2x+12)+(y2+2.2y+22)=0

(x-1)2+(y+2)2=0

=>x-1=0=>x=1

=>y+2=0=>y=-2

8 tháng 10 2018

\(x^2+y^2-2x+4y+5=0\)

\(\left(x^2-2x+1\right)+\left(y^2+2.y.2+2^2\right)=0\)

\(\left(x-1\right)^2+\left(y+2\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x;y\)

Mà \(\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

9 tháng 12 2018

1

a) x+ 4y+ 4xy - 16 

=(x2 + 4xy + 4y2) - 16

=(x+2y)- 16 

=(x+2y-4)(x+2y+4)

b)x2 + y2 - 2x + 4y + 5 =0

<=> x- 2x + 1 + y- 4y + 4=0
<=> (x-1)2 + (y-2)2 =0 
<=> x=1 và y=2

18 tháng 9 2018

a) (x2+2x+1)+(y2+2y+1)=0

=>(x+1)2+(y+1)2=0

\(\left(x+1\right)^2\ge0;\left(y+1\right)^2\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)

Vậy x=y=-1

Bạn làm tiếp câu còn lại nha <3 

Chúc bạn học tốt :)