Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 4x^2+y^2-20x-2y+26=0;
(4x^2-20x+25)+(y^2-2y+1)=(2x-5)^2+(y-1)^2=0
<=>x=5/2; y=1
\(x^2+y^2+26+10x+2y=0\)
\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
b)5x^2+9y^2-12xy-6x+9=0
=>4x^2-12xy+9y^2+x^2-6x+9=0
=>(2x-3y)^2+(x-3)^2=0
=>2x-3y=0 và x-3=0
=>y=2 và x=3
Ta có : x2 - 4x + y2 + 2y + 5 = 0
<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0
<=> (x - 2)2 + (y + 1)2 = 0
Mà (x - 2)2 \(\ge0\forall x\)
(y + 1)2 \(\ge0\forall x\)
Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)
a, \(x^2+y^2-2x+10y+26=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)
b,\(4x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)
c,\(5x^2+9y^2-12xy+4x+4=0\)
\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)
\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)
d,\(5x^2+9y^2-6xy-4x+1=0\)
\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)
a) \(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\y=1\end{cases}\Rightarrow}x=-1}\)
Vậy x=-1 ; y=1
a) x2 + y2 - 6x + 2y + 10 = 0
<=> ( x2 - 6x + 9 ) + ( y2 + 2y + 1 ) = 0
<=> ( x - 3 )2 + ( y + 1 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
b) 4x2 + y2 - 20x - 2y + 26 = 0
<=> ( 4x2 - 20x + 25 ) + ( y2 - 2y + 1 ) = 0
<=> ( 2x - 5 )2 + ( y - 1 )2 = 0
<=> \(\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=1\end{cases}}\)
a) x2 + y2 - 6x + 2y + 10 = 0
=> (x2 - 6x + 9) + (y2 + 2y + 1) = 0
=> (x - 3)2 + (y + 1)2 = 0 (1)
Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Đẳng thức (1) xảy ra <=> \(\hept{\begin{cases}x-3=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
Vậy x = 3 ; y = -1
b) 4x2 + y2 + 20x - 2y + 26 = 0
=> (4x2 - 20x + 25) + (y2 - 2y + 1) = 0
=> (2x - 5)2 + (y - 1)2 = 0 (1)
Vì \(\hept{\begin{cases}\left(2x-5\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x-5\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
Đẳng thức (1) "=" xảy ra <=> \(\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2,5\\y=1\end{cases}}\)
Vậy x = 2,5 ; y = 1