Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{2}{x}=\frac{3}{y}=k\Rightarrow kx=2;ky=3\)
\(\Rightarrow kx.ky=2.3=6=k^2.xy=k^2.96\)
\(\Rightarrow k^2=\frac{6}{96}=\frac{1}{16}\Rightarrow k\in\left\{-\frac{1}{4};\frac{1}{4}\right\}\)
Tự làm tiếp
\(\frac{2}{x}=\frac{3}{y}vàxy=96\)
x=\(\frac{2y}{3}\)
Thế vào xy=96,ta có
\(\frac{2y}{3}.y=96\)
y^2=96.3:2=144
y=12 hoặc-12
Nếu y=12 thì x=96:12=8
Nếu y=-12 thì x=96:-12=-8
Vậy{x;y}={8;12} {-8;-12}
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{2}{x}=\frac{3}{y}=\frac{2+3}{x+y}=\frac{5}{96}\)
=> \(\frac{2}{x}=\frac{5}{96}\)
2 * 96 = 5x
192 = 5x
x = 38.4
=> \(\frac{3}{y}=\frac{5}{96}\)
3 * 96 = 5y
288 = 5y
y = 57.6
Vậy x = 38.4 ; y = 57.6
Ta có: \(\frac{x}{y}=\frac{2}{3}\) => \(\frac{x}{2}=\frac{y}{3}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\) => \(\hept{\begin{cases}x=2k\\y=3k\end{cases}}\) (*)
Khi đó, ta có: 2y2 - xy = 48
=> 2(3k)2 - 2k.3k = 48
=> 18k2 - 6k2 = 48
=> 12k2 = 48
=> k2 = 4
=> \(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
+) Với k = 2 thay vào (*), ta được :
x = 2.2 = 4
y = 2.3 = 6
+) Với k = -2 thay vào (*), ta được:
x = -2.2 = -4
y = -2.3 = -6
\(\frac{2}{x}=\frac{3}{y}\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
Ta có: \(xy=2k.3k=6k^2=96\Rightarrow k^2=16\Rightarrow k=8\)
\(\Rightarrow x=2k=2.8=16;y=3k=3.8=24\)
\(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{46}{12}=\frac{23}{6}\)
B tự làm nốt
Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)
Thay vào rồi tự tìm
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
Thay vào rồi tự tìm
Câu e tương tự
P/S: mk đang vội nên chỉ gợi ý thôi, b thông cảm
Đặt: \(\frac{x}{3}=\frac{y}{2}=k\)
ta có :\(x=3k;y=2k\)
Ta lại có : \(xy^2=96\)\(\Rightarrow3k.\left(2k\right)^2=96\Rightarrow3k.4k^2=96\Rightarrow12k^3=96\)
\(\Rightarrow k^3=\frac{96}{12}=8\)\(\Rightarrow k=2\)
\(\Rightarrow x=2.3=6;y=2.2=4\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10
\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
* \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
* \(\frac{y}{12}=2\Rightarrow y=2.12=24\)
* \(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Vậy...
Ý mk nhầm chút xíu nhé! Cko sorry!
* \(\frac{z}{15}=2\Rightarrow z=2.15=30\)
... :( Xl
2). Ta có: x/2=y/3 => x/8 = y/12
y/4=z/5 => y/12 = z/15
=> x/2=y/12=z/15 và x+y-z=10
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10
=> x=2.(-10)=-20
y=12.(-10)=-120
z=15.(-10)=-150
Vậy x=-20; y=-120;z=-150
3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k
=> x=2k
y=5k
Ta có xy = 10
2k.5k =10
10. k2=10
k2 = 10 :10=1
=> k =1; k=-1
+) k = 1
=> x=2.1=2
y=5.1=5
+) k = -1
=> x= 2.(-1) =-2
y=5.(-1) = -5
Vậy x=2;y=5 hoặc x=-2;y=-5
Câu 2:
Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Vậy x=16;y=24;z=30
Đặt \(\frac{2}{x}=\frac{3}{y}=\frac{1}{k}\Rightarrow x=2k;y=3k\)
Mà \(xy=96\Leftrightarrow2k\cdot3k=96\)
\(\Leftrightarrow6k^2=96\Leftrightarrow k^2=16\Leftrightarrow\left[\begin{array}{nghiempt}k=4\\k=-4\end{array}\right.\)
Với k=4 thì x=8;y=12
Với k=-4 thì x=-8 ; y=-12
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x.y}{2.3}=\frac{96}{6}=16\)=> \(\frac{x}{2}=16\Rightarrow16.2=32\)
\(\frac{y}{3}=16\Rightarrow16.3=48\)