\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

TA CÓ: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

THAY x=2 VÀO \(\frac{2x+1}{5}\)

CÓ : \(\frac{2x+1}{5}=\frac{2.2+1}{5}=\frac{5}{5}=1\)

\(\Rightarrow\frac{3y-2}{7}=1\left(=\frac{2x+1}{5}\right)\)

\(\Rightarrow3y-2=7\)

\(3y=7-2\)

\(3y=5\)

\(y=\frac{5}{3}\)

VẬY X=2; Y=5\3

CHÚC BẠN HỌC TỐT!!

9 tháng 7 2017

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

18 tháng 7 2018

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

TH 1 : \(2x+3y-1=0\)

\(\Rightarrow\frac{2x+1}{5}=0;\frac{3y-2}{7}=0\)

\(\Rightarrow2x+1=0;3y-2=0\)

\(\Rightarrow2x=-1;3y=2\)

\(\Rightarrow x=-\frac{1}{2};y=\frac{2}{3}\)

TH 2 : \(2x+3y-1\ne0\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Mà \(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow1=\frac{3y-2}{7}\)

\(\Rightarrow3y-2=7\)

\(\Rightarrow3y=9\)

\(\Rightarrow y=3\)

Vậy \(\orbr{\begin{cases}x=-\frac{1}{2};y=\frac{2}{3}\\x=2;y=3\end{cases}}\)

18 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\Rightarrow\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

Do \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow6x=12\Leftrightarrow x=2\)

Xét :\(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(1=\frac{3y-2}{7}\)

\(\Rightarrow3y=9\Leftrightarrow y=3\)

21 tháng 12 2016

x=2

y=3

20 tháng 2 2017

Áp dụng TC DCTSBN ta có :

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

Thay x = 2 và 2 TLT đầu ta được :

\(\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Leftrightarrow\frac{3y-2}{7}=1\)

\(\Rightarrow3y-2=7\Rightarrow y=3\)

Vậy x = 2 và y = 3

12 tháng 1 2020

Ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\) \(\left(x\ne0\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)\(=\frac{\left(2x+1\right)+\left(3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}\)\(=\frac{0}{12-6x}=0\)

\(\Rightarrow\hept{\begin{cases}2x+1=0\\3y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{2}{3}\end{cases}}\)

a) \(\frac{x-1}{-15}\)=\(\frac{-60}{x-1}\)

=> (x-1).(x-1)=-60.(-15)

=>(x-1)2=900

=>(x-1)2=302

=>x-1=30

=>x=30+1

=>x=31

học tốt

28 tháng 10 2019

b. Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

28 tháng 10 2019

b. Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

21 tháng 7 2019

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow\frac{2x+1}{5}=k\rightarrow2x+1=5k\rightarrow2k=5k-1\)

\(\frac{3y-2}{7}=k\rightarrow3y-2=7k\rightarrow3y=2k+2\)

 \(\frac{2x+3y-1}{6x}=k\rightarrow2x+3y-1=6x.k\)

                                     \(\rightarrow5k-1+7k+2-1=k.3\left(5k-1\right)\)

                                     \(\rightarrow12k=15k^2-3k\)

                                      \(\rightarrow15k^2-15k=0\)

                                       \(\rightarrow15k\left(k-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}k=0\rightarrow x=\frac{-1}{2};y=\frac{2}{3}\\k=1\rightarrow x=2;y=3\end{cases}}\)

22 tháng 10 2019

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\)

\(=\frac{2x+1+3y-2-2x-3y+1}{5+7-6x}=0\)

\(\Rightarrow\frac{2x+1}{5}=0\Rightarrow x=-\frac{1}{2}\)

\(\Rightarrow\frac{3y-2}{7}=0\Rightarrow y=\frac{2}{3}\)

19 tháng 5 2017

a)\(\frac{x-1}{-15}=-\frac{60}{x-1}\)(đk x khác 1)

\(< =>\left(x-1\right)^2=-60.-15=900\)

\(=>\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}< =>\orbr{\begin{cases}x=31\\x=-29\end{cases}\left(tmđk\right)}}\)

b)\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)(*)

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>\(6x=12=>x=2\)

thay vào (*)=>\(\frac{3y-2}{7}=1=>y=3\)

19 tháng 5 2017

\(a,\frac{x-1}{-15}=-\frac{60}{x-1}\)

\(=>\left(x-1\right)^2=-15.-60\)

\(=>\left(x-1\right)^2=900\)

\(=>\left(x-1\right)^2=\left(31-1\right)^2\)

=> x = 31