Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{6}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}\)
Ta có : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}=\frac{3x}{27}=\frac{2y}{24}=\frac{5z}{50}=\frac{3x-2y+5z}{27-24+50}=\frac{86}{53}\) (đề sai)
b) Đặt : k = \(\frac{x}{5}=\frac{y}{7}\)
=> k2 \(=\frac{x}{5}.\frac{y}{7}=\frac{xy}{35}=\frac{140}{35}=4\)
=> k = -2;2
+ k = 2 thì \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{z}{7}=2\Rightarrow z=14\)
+ k = -2 thì \(\frac{x}{5}=2\Rightarrow x=-10\)
\(\frac{z}{7}=2\Rightarrow z=-14\)
Vậy................................
\(1,\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)
\(=>\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\left(\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\right)=0\)
\(=>\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
\(=>\left(\frac{5x^2}{10}-\frac{2x^2}{10}\right)+\left(\frac{5y^2}{15}-\frac{3y^2}{15}\right)+\left(\frac{5z^2}{20}-\frac{4z^2}{20}\right)=0\)
\(=>\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)
Tổng 3 số không âm=0 <=> chúng đều=0
\(< =>\frac{3}{10}x^2=\frac{2}{15}y^2=\frac{1}{20}z^2=0< =>x=y=z=0\)
Vậy x=y=z=0
\(2,x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
\(=>x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)
\(=>\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)=0\)
\(=>\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(=>\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)
\(=>\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
Tổng 2 số không âm=0 <=> chúng đều=0
\(< =>\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}< =>\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}< =>\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}}}\)\(< =>\hept{\begin{cases}x\in\left\{-1;1\right\}\\y\in\left\{-1;1\right\}\end{cases}}\)
Vậy có 4 cặp (x;y) cần tìm là (1;1) ;(1;-1);(-1;1);(-1;-1)
a/ \(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)
\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)
b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)
\(\Rightarrow\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\frac{x^2}{5}-\frac{y^2}{5}-\frac{z^2}{5}=0\)
\(\Rightarrow\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
\(\Rightarrow x^2\left(\frac{1}{2}-\frac{1}{5}\right)+y^2\left(\frac{1}{3}-\frac{1}{5}\right)+z^2\left(\frac{1}{4}-\frac{1}{5}\right)=0\)
Mà \(x^2\left(\frac{1}{2}-\frac{1}{5}\right)+y^2\left(\frac{1}{3}-\frac{1}{5}\right)+z^2\left(\frac{1}{4}-\frac{1}{5}\right)\ge0\)
Xảy ra khi \(\hept{\begin{cases}x^2\left(\frac{1}{2}-\frac{1}{5}\right)=0\\y^2\left(\frac{1}{3}-\frac{1}{5}\right)=0\\z^2\left(\frac{1}{4}-\frac{1}{5}\right)=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\)\(\Rightarrow x=y=z=0\)
bạn đưa về 1 ẩn rồi giải nhen :
a) \(\frac{x}{y}=\frac{2}{3}\Rightarrow y=\frac{3x}{2}\)
Ta có : \(x.y=54\Leftrightarrow x.\frac{3x}{2}=54\)
\(\Rightarrow3x^2=108\)
\(\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
a/ĐKXĐ: \(y\ne4\)
Đặt \(y-4=x\)
\(1+\frac{45}{x^2}=\frac{14}{x}\Leftrightarrow x^2-14x+45=0\Rightarrow\left[{}\begin{matrix}x=9\\x=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y-4=9\\y-4=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=13\\y=9\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne1\)
Đặt \(x-1=y\)
\(\frac{5}{y}-\frac{4}{3y^2}=3\Leftrightarrow9y^2=15y-4\)
\(\Leftrightarrow9y^2-15y+4=0\Rightarrow\left[{}\begin{matrix}y=\frac{4}{3}\\y=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{4}{3}\\x-1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=\frac{4}{3}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne5\)
\(\Leftrightarrow2x-5=3x-15\)
\(\Leftrightarrow x=10\)
d/ ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow2\left(x^2-12\right)=2x^2+3x\)
\(\Leftrightarrow3x=-24\Rightarrow x=-8\)
e/ ĐKXĐ: \(x\ne2\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=1\end{matrix}\right.\)
f/ DKXĐ: \(x\ne-\frac{1}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=8\)
\(\Leftrightarrow4x^2-1=8\)
\(\Leftrightarrow x^2=\frac{9}{4}\Rightarrow x=\pm\frac{3}{2}\)
Ta có:
\(2P=\frac{2x^2}{y^2}+\frac{2y^2}{x^2}-6\left(\frac{x}{y}+\frac{y}{x}\right)+10\)
\(=\left(\frac{x^2}{y^2}+2+\frac{y^2}{x^2}\right)-4\left(\frac{x}{y}+\frac{y}{x}\right)+4+\left(\frac{x^2}{y^2}-2\frac{x}{y}+1\right)+\left(\frac{y^2}{x^2}-2\frac{y}{x}+1\right)+2\)
\(=\left(\frac{x}{y}+\frac{y}{x}-2\right)^2+\left(\frac{x}{y}-1\right)^2+\left(\frac{y}{x}-1\right)^2+2\)
\(\ge2\)
\(\Rightarrow P\ge1\)
Dấu = xảy ra khi x = y
Đặt \(\frac{7}{x+y}=a,\frac{1}{x-y}=b\)
Khi đó ta có:
\(\hept{\begin{cases}2a+3b=5\\a-2b=-1\end{cases}}\Rightarrow\hept{\begin{cases}2a+3b=5\left(1\right)\\2a-4b=-2\left(2\right)\end{cases}}\)
Trứ vế với vế của (1) và (2), ta được:
\(2a+3b-\left(2a-4b\right)=5-\left(-2\right)\)
\(\Rightarrow7b=7\Rightarrow b=1.\)
Thay b = 1 vào (1): \(2a+3=5\Rightarrow a=1.\)
\(a=1\Rightarrow\frac{7}{x+y}=1\Rightarrow x+y=7\)
\(b=1\Rightarrow\frac{1}{x-y}=1\Rightarrow x-y=1\)
Từ đó tính được \(x=4,y=3\)
Chúc bạn học tốt.