Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Rightarrow B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow B=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
_Học tốt_
\(x+\left[\frac{5}{5}+\frac{5}{45}+\frac{5}{117}+\frac{5}{221}+...+\frac{5}{1845}\right]=2\)
\(x+\left[\frac{5}{1.5}+\frac{5}{5.9}+\frac{5}{9.13}+\frac{5}{13.17}+...+\frac{5}{41.45}\right]=2\)
\(\frac{5}{4}x+\frac{5}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=\frac{2.5}{4}=\frac{5}{2}\)
\(\frac{5}{4}x+\frac{5}{4}.\left(1-\frac{1}{45}\right)=\frac{5}{2}\)
\(\frac{5}{4}x+\frac{11}{9}=\frac{5}{2}\)
\(\frac{5}{4}x=\frac{23}{18}\)
\(x=\frac{46}{45}\)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{99\times101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
a) \(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{2}{5}\right)\times\left(1-\dfrac{2}{7}\right)\times\left(1-\dfrac{2}{9}\right)\)
\(=\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{5}{5}-\dfrac{2}{5}\right)\times\left(\dfrac{7}{7}-\dfrac{2}{7}\right)\times\left(\dfrac{9}{9}-\dfrac{2}{9}\right)\)
\(=\dfrac{2}{3}\times\dfrac{3}{5}\times\dfrac{5}{7}\times\dfrac{7}{9}\)
\(=\dfrac{2\times3\times5\times7}{3\times5\times7\times9}\)
\(=\dfrac{2}{9}\)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(=1-\dfrac{1}{9}\)
\(=\dfrac{9}{9}-\dfrac{1}{9}\)
\(=\dfrac{8}{9}\)
Sửa câu b)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
Đặt \(A=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(2A=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(2A=1-\dfrac{1}{9}\)
\(2A=\dfrac{9}{9}-\dfrac{1}{9}\)
\(2A=\dfrac{8}{9}\)
\(A=\dfrac{8}{9}:2\)
\(A=\dfrac{8}{18}\)
\(A=\dfrac{4}{9}\)
Vậy : \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}=\dfrac{4}{9}\)
Tính nhanh
a) 5/1x3 + 5/3x5 + 5/5x7 + ........ + 5/43x45
b) 6/1x4 + 6/4x7 + 6/7x10 + ...... + 6/97x100
\(a,\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{43.45}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{43.45}\right)=\frac{5}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{45}\right)=\frac{5}{3}.\frac{44}{45}=\frac{44}{27}\)
= 2/ 1x3 +2/ 3x5 +2/ 5x7 + 2/ 7 x9+............+2/2011 x 2003 +2 / 2003 x 2005
Đặt A =2/1x3+2\3x5+................+2/41x43
A =1/1-1/3+1/3-1/5+...................+1/41-1/43
A=1-1/43
A=42/43
A=2/1X3+2/3X5+2/5X7+. . .+2/41X43
A=1/1-1/3+1/3-1/5+1/5-1/7+. . .+1/41-1/43
A=1/1-1/43
A=42/43
Tick mk nhé