\(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+18}+\sqrt{x^2-6x+12}=4+\sqrt{3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)

\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)

\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)

mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)

17 tháng 1 2019

@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

17 tháng 7 2017

Ta có :

\(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)

=\(\sqrt{x^2-2.3.x+3^2+4}-\sqrt{x^2-2.3.x+3^2+1}\)

=\(\sqrt{\left(x-3\right)^2+2^2}-\sqrt{\left(x-3\right)^2+1^2}\)

23 tháng 8 2017

Ta có :

\(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)

\(=\sqrt{x^2-6x+9+4}+\sqrt{x^2-6x+9+1}\)

\(=\sqrt{\left(x-3\right)^2+2^2}+\sqrt{\left(x-3\right)^2+1}\)

15 tháng 11 2016

bai nay trang 10 trong sanh toan nang cao va cac chuyen de (dai so ) 9

11 tháng 1 2017

Dòng 1 trang 29  có ghi 

X=3

rẤT TIẾC TRANG 28 BỊ MẤT KHÔNG BIẾT DOẠN ĐẦU THẾ NÀO?

13 tháng 11 2018

Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

=> A = 3

5 tháng 10 2016

(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3

=>

\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3