K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

Ai giúp em đi ạ

Em hứa sẽ vote nhiệt tình luôn huhuuu

23 tháng 8 2020

a, (x2 - 3)(2 + 4x)

= 2x2 + 4x3 - 6 - 12x

b, 6(3x + 5)(x - 4)

= (18x + 30)(x - 4)

= 18x2 - 72 + 30x - 120

= 18x2 + 30x - 192

a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)

=>8x+4-18x+3=2x+1

=>-10x+7=2x+1

=>-12x=-6

hay x=1/2

b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)

=>5x-21=6x

=>-x=21

hay x=-21

4 tháng 9 2016

a/ A = 3x2 + 6x - 2  => 3A = 9x2 + 18x - 6 = (3x)2 + 2 . 3 . 3x + 32 - 15 = (3x + 3)2 - 15 \(\ge\)-15  => A\(\ge\)5

Đẳng thức xảy ra khi: (3x + 3)2 = 0  => x = -1

Vậy giá trị nhỏ nhất của A là -5 khi x = -1.

b/ B = (x + 1)(2x - 3) + 1 = 2x2 - 3x + 2x - 3 + 1 = 2x2 - x - 2

=> 2B = 4x2 - 2x - 4 = (2x)2 - 2 . 0,5 . 2x + 0,52 - 4,25 = (2x - 0,5)2 - 4,25 \(\ge\)-4,25  => B \(\ge\)-2,125

Đẳng thức xảy ra khi: (2x - 0,5)2 = 0  => x = 0,25

Vậy giá trị nhỏ nhất của B là -2,125 khi x = 0,25.

c/ C = x2 + y2 + 4x - 2y + 1 = x2 + y2 + 4x - 2y + 1 + 22 - 4 = (x2 + 4x + 22) + (y2 - 2y + 1) - 4 = (x + 2)2 + (y - 1)2 - 4\(\ge\)-4

Đẳng thức xảy ra khi: (x + 2)2 = 0 và (y - 1)2 = 0  => x = -2 và y = 1

Vậy giá trị nhỏ nhất của C là -4 khi x = -2 và y = 1

1 tháng 11 2017

khó quá em mới học lớp 5

1 tháng 11 2017

em mới học lớp 7 à chị

k em nha

thanks

23 tháng 8 2019

2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4 

Ta luôn có: (x - 3)2 \(\ge\)\(\forall\)x

=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3

Vậy MinA = -4 tại  x = 3

Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3

Ta luôn có: 4(x - 1)2 \(\ge\)\(\forall\)x

=> 4(x - 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

vậy MinB = 3 tại x = 1

Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8

Ta luôn có: 2(x + 1)2 \(\ge\)\(\forall\)x

=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinC = -8 tại x = -1

23 tháng 8 2019

1/

\(A=x^2-6x+5\)

\(A=x^2-2\cdot3x+3^2-3^2+5\)

\(A=\left(x-3\right)^2-3^2+5\)

\(A=\left(x-3\right)^2-9+5\)

\(A=\left(x-3\right)^2-4\)

mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)

\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)

với \(\left(x-3\right)^2=0;x=3\)

\(B=4x^2-8x+7\)

\(B=4\left(x^2-2x+\frac{7}{4}\right)\)

\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)

\(B=4\left(x-1\right)^2+3\)

\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)

\(\Rightarrow GTNNB=3\)

với \(\left(x-1\right)^2=0;x=1\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x-3\right)\)

\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)

\(C=\left(x+1\right)^2-8\)

\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow GTNNC=-8\)

với \(\left(x+1\right)^2=0;x=-1\)

23 tháng 8 2019

2.

c) \(C=2x^2+4x-6=2\left(x^2+2x+1\right)-8\)

\(=2\left(x+1\right)^2-8\ge-8\forall x\)

Dấu"=" xảy ra<=> \(2\left(x+1\right)^2=0\Leftrightarrow x=-1\)

3.

c) \(C=-3x^2-6x+9=-3\left(x^2+2x+1\right)+12\)

\(=-3\left(x+1\right)^2+12\le12\forall x\)

Dấu "=" xảy ra<=> \(-3\left(x+1\right)^2=0\Leftrightarrow x=-1\)

23 tháng 8 2019

\(2,GTNN\)

\(A=x^2-6x+5=x^2+6x+9-4\)

\(=\left(x+3\right)^2-4\ge-4\)

\(A_{min}=-4\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)

\(B=4x^2-8x+7=4\left(x^2-2x+\frac{7}{4}\right)\)

\(=4\left(x^2-2x+1+\frac{3}{4}\right)=4\left(x-1\right)^2+3\ge3\)

\(\Rightarrow B_{min}=3\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

\(C=2x^2+4x-6=2\left(x^2+2x-3\right)\)

\(=2\left(x^2+2x+1-4\right)=2\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow C_{min}=-8\Leftrightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)

23 tháng 8 2019

\(3,GTLN\)

\(A=-x^2+2x-3=-\left(x^2-2x+3\right)\)

\(=-\left(x^2-2x+1-4\right)=-\left(x-1\right)^2+4\le4\)

\(A_{max}=4\Leftrightarrow-\left(x-1\right)^2=0\Rightarrow x=1\)

\(B=-9x^2+6x-4=-\left[9x^2-6x+4\right]\)

\(=-\left[\left(3x\right)^2-6x+1+3\right]=-\left(3x-1\right)^2-3\)

\(B_{max}=-3\Leftrightarrow-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

\(C=-3x^2-6x+9=-3\left(x^2+2x-3\right)\)

\(=-3\left(x^2+2x+1-4\right)=-3\left(x+1\right)^2+12\)

\(C_{max}=12\Leftrightarrow-3\left(x+1\right)^2=0\Rightarrow x=-1\)

22 tháng 8 2020

A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)

A = 3x(2x + 11) - 5(2x+  11) - 2x(3x + 7) - 3(3x + 7)

A=  6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

A = (6x2 - 6x2) + (33x - 10x - 14x - 9x) + (-55 - 21) = -76 => không phụ thuộc vào biến x (đpcm)

B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 2x(4x2 - 6x + 9) + 3(4x2 - 6x + 9) - 8x3 + 2

= 8x3 - 12x2 + 18x + 12x2 - 18x - 27 - 8x3 + 2

= (8x3 - 8x3) + (-12x2 + 12x2) + (18x - 18x) + (-27 + 2) = -25 => không phụ thuộc vào biến x (đpcm)

22 tháng 8 2020

A= ( 3x - 5 ) ( 2x+11) - (2x+3)(3x+7) 

=\(6x^2+23x-55-\left(6x^2+23x+21\right)\) 

=\(6x^2+23x-55-6x^2-23x-21\)  

= -76 

Vậy A không phụ thuộc vào x