Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{315-x}{101}+\dfrac{313-x}{103}+\dfrac{311-x}{105}+\dfrac{309-x}{107}+4=0\\ \Leftrightarrow\dfrac{315-x}{101}+1+\dfrac{313-x}{103}+1+\dfrac{311-x}{105}+1+\dfrac{309-x}{107}+1=0\\ \Leftrightarrow\dfrac{416-x}{101}+\dfrac{416-x}{103}+\dfrac{416-x}{105}+\dfrac{416-x}{107}=0\\ \Leftrightarrow\left(416-x\right)\left(\dfrac{1}{101}+\dfrac{1}{103}+\dfrac{1}{105}+\dfrac{1}{107}\right)=0\\ \dfrac{1}{101}+\dfrac{1}{103}+\dfrac{1}{105}+\dfrac{1}{107}>0\\ \Rightarrow416-x=0\\ \Leftrightarrow x=416\)
Đề sai sửa lại và làm:
Ta có:
\(\dfrac{315-x}{101}+\dfrac{313-x}{103}+\dfrac{311-x}{105}+\dfrac{309-x}{107}=-4\)
\(\Leftrightarrow\left(\dfrac{315-x}{101}+1\right)+\left(\dfrac{313-x}{103}+1\right)+\left(\dfrac{311-x}{105}+1\right)+\left(\dfrac{309-x}{107}+1\right)=0\)
\(\Leftrightarrow\dfrac{416-x}{101}+\dfrac{416-x}{103}+\dfrac{416-x}{105}+\dfrac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\dfrac{1}{101}+\dfrac{1}{103}+\dfrac{1}{105}+\dfrac{1}{107}\right)=0\)
\(\Leftrightarrow416-x=0\)
\(\Leftrightarrow x=416\)
VẬY....
Lời giải:
PT \(\Leftrightarrow \frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=4\)
\(\Leftrightarrow \frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=4\)
\(\Leftrightarrow (416-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=4\)
\(\Rightarrow 416-x=\frac{4}{\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}}\)
\(\Rightarrow x=416-\frac{4}{\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}}\)
Lời giải:
\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}=4\)
\(\Leftrightarrow \frac{315-x}{101}-1+\frac{313-x}{103}-1+\frac{311-x}{105}-1+\frac{309-x}{107}-1=0\)
\(\Leftrightarrow \frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow (416-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\neq 0\) nên suy ra $416-x=0$
\(\Rightarrow x=416\)
\(1,\)
\(a,\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)\)
\(=\dfrac{11}{125}+\left(\dfrac{-1}{2}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{125}\)
\(b,-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=\dfrac{-12}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=-15.\left[\dfrac{12}{7}+\dfrac{2}{7}+\left(-5\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\right]\)
\(=-15.\left[2+\left(-5\right).\dfrac{1}{105}\right]\)
\(=-15.\left(2-\dfrac{1}{21}\right)\)
\(=-15.\dfrac{41}{21}=\dfrac{-615}{21}\)
\(2,\)
\(a,\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)
\(\Leftrightarrow\dfrac{11}{13}-\dfrac{5}{42}+x=\dfrac{-15}{28}+\dfrac{11}{13}\)
\(\Leftrightarrow x=\dfrac{-15}{28}+\dfrac{11}{13}-\dfrac{11}{13}+\dfrac{5}{42}\)
\(\Leftrightarrow x=\left(\dfrac{11}{13}-\dfrac{11}{13}\right)+\left(\dfrac{5}{42}+\dfrac{-15}{28}\right)\)
\(\Leftrightarrow x=\dfrac{5}{12}\)
Vậy \(x=\dfrac{5}{12}\)
\(b,\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|-3,75=-2,15\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6=\dfrac{16}{10}=\dfrac{8}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=\dfrac{-8}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}-\dfrac{4}{15}=\dfrac{4}{3}\\x=\dfrac{-8}{5}-\dfrac{4}{15}=\dfrac{-28}{15}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{4}{3};\dfrac{-28}{15}\right\}\)
\(c,7^{x+2}+2.7^{x-1}=345\)
\(\Leftrightarrow7^{x-1}.\left(7^3+2\right)=345\)
\(\Leftrightarrow7^{x-1}.\left(343+2\right)=345\)
\(\Leftrightarrow7^{x-1}.345=345\)
\(\Leftrightarrow7^{x-1}=345:345=1\)
\(\Leftrightarrow x-1=0\)
\(x=0+1=1\)
Vậy \(x=1\)
a)
Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)
và \(-x+y-z=11_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:
\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)
Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)
Vậy.....
b); c); d); e) làm tương tự.
a, \(\dfrac{3}{4}+x=\dfrac{8}{13}\)
\(x=\dfrac{8}{13}-\dfrac{3}{4}\)
\(x=-\dfrac{7}{52}\)
b,\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
c, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(2x-\dfrac{1}{7}=0\)
\(x-\dfrac{1}{7}=0:2\)
\(x-\dfrac{1}{7}=0\)
\(x=0-\dfrac{1}{7}\)
\(x=\dfrac{1}{7}\)
d, \(\dfrac{3}{4}+\dfrac{1}{4}\div x=\dfrac{2}{5}\)
\(\left(\dfrac{3}{4}+\dfrac{1}{4}\right):x=\dfrac{2}{5}\)
\(1:x=\dfrac{2}{5}\)
\(x=1:\dfrac{2}{5}\)
\(x=\dfrac{5}{2}\)
a) \(\dfrac{3}{4}+x=\dfrac{8}{13}\)\(\Leftrightarrow\) \(x=\dfrac{8}{13}-\dfrac{3}{4}=\dfrac{-7}{52}\) vậy \(x=\dfrac{-7}{52}\)
b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\) \(\Leftrightarrow\) \(\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\) \(\Leftrightarrow\) \(x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{-3}{20}\) vậy \(x=\dfrac{-3}{20}\)
c) \(2x\left(x-\dfrac{1}{7}\right)=0\) \(\Leftrightarrow\) \(2x^2-\dfrac{2}{7}x=0\)
\(\Delta\) = \(\left(\dfrac{-2}{7}\right)^2-4.2.0=\dfrac{4}{49}>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{\dfrac{2}{7}+\sqrt{\dfrac{4}{49}}}{4}=\dfrac{1}{7}\)
\(x_2=\dfrac{\dfrac{2}{7}-\sqrt{\dfrac{4}{49}}}{4}=0\)
vậy \(x=0;x=\dfrac{1}{7}\)
\(\dfrac{x-1}{101}-\dfrac{x-13}{103}=\dfrac{x-17}{107}-\dfrac{x-19}{109}\)
\(\Rightarrow\left(\dfrac{x-11}{101}+1\right)-\left(\dfrac{x-13}{103}+1\right)=\left(\dfrac{x-17}{107}+1\right)-\left(\dfrac{x-19}{109}+1\right)\)
\(\Rightarrow\dfrac{x+90}{101}-\dfrac{x+90}{103}=\dfrac{x+90}{107}-\dfrac{x+90}{109}\)
\(\Rightarrow\dfrac{x+90}{101}-\dfrac{x+90}{103}-\dfrac{x+90}{107}+\dfrac{x+90}{109}=0\)
\(\Rightarrow\left(x+90\right)\left(\dfrac{1}{101}-\dfrac{1}{103}-\dfrac{1}{107}+\dfrac{1}{109}\right)=0\)
Vì \(\dfrac{1}{101}-\dfrac{1}{103}-\dfrac{1}{107}+\dfrac{1}{109}\ne0\)
Nên \(x+90=0\Rightarrow x=-90\)