Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
a: =>|3x-5|=|x+2|
=>3x-5=x+2 hoặc 3x-5=-x-2
=>2x=7 hoặc 4x=3
=>x=7/2 hoặc x=3/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
c: \(\Leftrightarrow\left|3x-5\right|=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=2\\\left(3x-5-x+2\right)\left(3x-5+x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=2\\\left(2x-3\right)\left(4x-7\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
d: \(\dfrac{11}{2}\le\left|x\right|< \dfrac{17}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{2}< =x< \dfrac{17}{2}\\-\dfrac{17}{2}< x< =-\dfrac{11}{2}\end{matrix}\right.\)
1) |x|=x+2
=> \(\left[{}\begin{matrix}x=x+2\\x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=2\left(voli\right)\\2x=-2\Rightarrow x=-1\end{matrix}\right.\)
vậy x=-1
c;b tương tự
2) \(\left|x-\dfrac{3}{2}\right|=\left|\dfrac{5}{2}-x\right|\)
=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{5}{2}-x\\x-\dfrac{3}{2}=x-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\Rightarrow x=2\\0=-1\left(voli\right)\end{matrix}\right.\)
vậy x=2
a)
\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
a, \(x^2-3x+2=0\\ < =>x^2-x-2x+2=0\\ < =>\left(x^2-x\right)-\left(2x-2\right)=0\\ < =>x\left(x-1\right)-2\left(x-1\right)=0\\ < =>\left(x-2\right)\left(x-1\right)=0\\ < =>\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
b) x3 + x2 - 36 = 0
=> x2.(x + 1) = 36
Vì x2 \(\ge\) 0 => (x + 1) \(\ge\) 0 (1)
Mặt khác: x2 là số chính phương nên những tích ko có số chính phương sẽ bị loại (2)
Từ điều kiện (1) và (2),ta có các TH sau:
TH1 : x2.(x + 1) = 1.36
=> \(\left\{{}\begin{matrix}x^2=1\\x+1=36\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1;-1\\x=35\end{matrix}\right.\) => Loại
TH2: x2.(x+1) = 36.1
=> \(\left\{{}\begin{matrix}x^2=36\\x+1=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=6;-6\\x=0\end{matrix}\right.\) => Loại
TH3: x2.(x + 1) = 4.9
=> \(\left\{{}\begin{matrix}x^2=4\\x+1=9\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2;-2\\x=8\end{matrix}\right.\) => Loại
TH4 : x2.(x + 1) = 9.4
=> \(\left\{{}\begin{matrix}x^2=9\\x+1=4\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=3;-3\\x=3\end{matrix}\right.\) => x = 3
Vậy x = 3
P/s: Đây là cách của mk. Bạn cx có thể í luận thêm để loại bỏ thêm 1 số TH nhé!!!