K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

Lời giải:

Ta có:

\(A=\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

<=> \(\left(2x\right)^2-2.2x+1-\left(4x^2-1\right)=0\)

<=> \(4x^2-4x+1-4x^2+1=0\)

<=>\(-4x+2=0\)

<=> \(-4x=-2\)

<=> \(x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

hahaChúc bạn học tốt!hihaTick cho mình nhé!eoeo

22 tháng 6 2018

Bài 1:

a) \(x^2-x+1\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0;\forall x\)

b) \(25x^2+10x+2\)

\(=25x^2+10x+1+1\)

\(=\left(5x+1\right)^2+1\ge1>0;\forall x\)

c) \(3x^2+2x+14\)

\(=3x^2+2x+\dfrac{1}{3}+\dfrac{41}{3}\)

\(=\left(\sqrt{3}x+\dfrac{\sqrt{3}}{3}\right)^2+\dfrac{41}{3}\ge\dfrac{41}{3}>0;\forall x\)

d) \(2x^2+y^2-2xy-2x+2\)

\(=x^2+y^2-2xy-2x+x^2+1+1\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+1\ge1>0;\forall x\)

Vậy ...

22 tháng 6 2018

thank nhiều lk nha ,hii

21 tháng 11 2017

Ta có: \(\left(a-b\right)^2\ge0,\forall ab\)

         \(\Leftrightarrow a^2-2ab+b^2\ge0\)

           \(\Leftrightarrow a^2+b^2\ge2ab\)

        \(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

         \(\Leftrightarrow\left(a+b\right)^2\ge4ab\left(1\right)\)

Lại có:  \(a^2+b^2\ge2ab\)

         \(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

         \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\left(2\right)\)

Từ (1) và (2) suy ra ĐPCM

14 tháng 8 2016

(1-2m)2 - 4m(m-2) >0

1-4m +4m2-4m2 +8m >0

4m +1 >0

m > -1/4

14 tháng 8 2016

với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?

14 tháng 8 2016

Bơ t hết rồi ak khocroi

5 tháng 8 2015

ukm......................

5 tháng 8 2015

Khó quá mik ko nghĩ ra

26 tháng 7 2019

\(x^2\left(x^2+5\right)-4x^2-20=0\)

\(x^4+5x^2-4x^2-20=0\)

\(x^4+x^2-20=0\)

thay x\(^2\) bằng t ( t ≥ 0 ) ta có:

pt⇔ \(t^2+t-20=0\)

\(t^2+5t-4t-20=0\)

\(\left(t-4\right)\left(t+5\right)\)

\(\left[{}\begin{matrix}t-4=0\\t+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=4\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)

* \(t=4\)\(x^2=4\) x = \(\pm2\)

26 tháng 7 2019

\( {x^2}\left( {{x^2} + 5} \right) - 4{x^2} - 20 = 0\\ \Leftrightarrow {x^4} + 5{x^2} - 4{x^2} - 20 = 0\\ \Leftrightarrow {x^4} + {x^2} - 20 = 0 \)

Đặt \(x^2=t(t\ge0)\)

PT trở thành: \(t^2+t-20=0\)

\(\Leftrightarrow t=4\)(thỏa điều kiện); \(t=-5\)(không thỏa điều kiện)

Với \(t=4 \Rightarrow x^2=4 \Rightarrow x = \pm2\)

Vậy \(S=\left\{2;-2\right\}\)