Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=2,5+\left|x-3\right|\ge2,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-3\right|=0\)
\(\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy Min(A) = 2,5 khi x = 3
A = 2,5 + | x - 3 |
| x - 3 | ≥ 0 ∀ x => 2, 5 + | x - 3 | ≥ 2, 5
Dấu "=" xảy ra khi x = 3
=> MinA = 2,5 <=> x = 3
B = -2, 5 - | 3x - 1 |
-| 3x - 1 | ≤ 0 ∀ x => -2,5 - | 3x - 1 | ≤ -2, 5
Dấu "=" xảy ra khi x = 1/3
=> MaxB = -2, 5 <=> x = 1/3
C = -| x - 4 | + 2
-| x - 4 | ≤ 0 ∀ x => -| x - 4 | + 2 ≤ 2
Dấu "=" xảy ra khi x = 4
=> MaxC = 2 <=> x = 4
D = | 4, 2 - x | + 1
| 4, 2 - x | ≥ 0 ∀ x => | 4, 2 - x | + 1 ≥ 1
Dấu "=" xảy ra khi x = 4, 2
=> MinD = 1 <=> x = 4, 2
a) x - 8 - (12 - 2x) = -20
=> x - 8 - 12 + 2x = -20
=> (x + 2x) + (-8 - 12) = -20
=> 3x - 20 = -20
=> 3x = 0 => x = 0
b) -27 + (x + 8) - ( +11) = 2
=> -27 + x + 8 - 11 = 2
=> -27 + x = 2 + 11 - 8
=> -27 + x = 5
=> x = 5 - (-27) = 32
c) -2x - 16 = -2 - (3x + 9)
=> -2x - 16 = -2 - 3x - 9
=> -2x - 16 + 2 + 3x + 9 = 0
=> (-2x + 3x) + (-16 + 2 + 9) = 0
=> x - 5 = 0
=> x = 5
\(a,x-8-\left(12-2x\right)=-20\)
\(x-8-12+2x=-20\)
\(x+2x-8-12=-20\)
\(3x-20=-20\)
\(3x=-20+20\)
\(3x=0\)
\(x=0\)
\(b,-27+\left(x+8\right)-\left(+11\right)=2\)
\(-27+x+8-11=2\)
\(x-27+8-11=2\)
\(x-30=2\)
\(x=2+30\)
\(x=32\)
\(c,-2x-16=2-\left(3x+9\right)\)
\(-2x-16=2-3x-9\)
\(-2x+3x=2-9+16\)
\(x=9\)
Học tốt
a, A= |3x + 1| - 2
Do: |3x + 1| lớn hơn hoặc bằng 0
=> A lớn hơn hoạc bằng -2
Dấu "=" xảy ra khi: 3x + 1 = 0 <=> x = -1/3
Vậy.......
b, B= |3,7 - x| +2,5
Do: |3,7 - x| lớn hơn hoặc bằng 0
=> B lớn hơn hoặc bằng 2,5
Dấu "=" xảy ra khi: 3,7 - x = 0 <=> x = 3,7
Vậy...........
c, C= |x+1,5| - 4,5
Do: |x + 1,5| lớn hơn hoặc bằng 0
=> C lớn hơn hoặc bằng -4,5
Dấu "=" xảy ra khi: x + 1,5 = 0 <=> x = -1,5
Vậy........
d, D= |x - 3/4| +1
Do: |x - 3/4| lớn hơn hoặc bằng 0
=> D lớn hơn hoặc bằng 1
Dấu "=" xảy ra khi: x - 3/4 = 0 <=> x = 3/4
Vậy...........
a)|3x|-12,5=|-2,5|
3x-12,5=2,5
3x=2,5+12,5
3x=15
x=15:3
x=5
vậy x=5
a/ Ta có :
\(\left|x-2\right|=\left|2-x\right|\)
\(\Leftrightarrow\left|x\right|+\left|x-2\right|=\left|x\right|+\left|2-x\right|\)
\(\Leftrightarrow\left|x\right|+\left|x-2\right|\ge\left|x+2-x\right|\)
\(\Leftrightarrow\left|x\right|+\left|x-2\right|\ge2\)
Dấu "=" xảy ra khi :
\(x\left(x-2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow2\le x\le2\Leftrightarrow x=2\)
Vậy \(x=2\)
b/ \(\left|2x-1\right|+\left|9-2x\right|\ge\left|2x-1+9-2x\right|\)
\(\Leftrightarrow\left|2x-1\right|+\left|9-2x\right|\ge8\)
Dấu "=" xảy ra khi :
\(\left(2x-1\right)\left(9-2x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\9-2x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\9-2x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le\dfrac{9}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\ge\dfrac{9}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{2}\le x\le\dfrac{9}{2}\)
Vậy ....
c/ Ta có : \(\left|3x-20\right|=\left|20-3x\right|\)
\(\Leftrightarrow\left|3x+7\right|+\left|3x-20\right|=\left|3x+7\right|+\left|20-3x\right|\)
\(\Leftrightarrow\left|3x+7\right|+\left|3x-20\right|\ge\left|3x+7+20-3x\right|\)
\(\Leftrightarrow\left|3x+7\right|+\left|3x-20\right|\ge27\)
Dấu "=" xảy ra khi :
\(\left(3x+7\right)\left(20-3x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+7\ge0\\20-3x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x+7\le0\\20-3x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{7}{3}\\x\le\dfrac{20}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-\dfrac{7}{3}\\x\ge\dfrac{20}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\dfrac{20}{3}\le x\le-\dfrac{7}{3}\)
Vậy...
d/ \(\left|10-x\right|+\left|x+30\right|\ge\left|10-x+x+30\right|\)
\(\Leftrightarrow\left|10-x\right|+\left|x+30\right|\ge40\)
Dấu "=" xảy ra khi :
\(\left(10-x\right)\left(x+30\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10-x\ge0\\x+30\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}10-x\le0\\x+30\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10\ge x\\x\ge-30\end{matrix}\right.\\\left\{{}\begin{matrix}10\le x\\x\le-30\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow10\ge x\ge-30\)
Vậy...
a) (3x + 1)3 = -27
=> (3x + 1)3 = (-3)3
=> 3x + 1 = -3
=> 3x = -3 - 1
=> 3x = -4
=> x = -4/3
b) |2,5 - x| = 1,3
=> \(\orbr{\begin{cases}2,5-x=1,3\\2,5-x=-1,3\end{cases}}\)
=> \(\orbr{\begin{cases}x=1,2\\x=3,8\end{cases}}\)
c) 0,5 - |x - 3,5| = 0
=> |x - 3,5| = 0,5
=> \(\orbr{\begin{cases}x-3,5=0,5\\x-3,5=-0,5\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=3\end{cases}}\)
d) Ta có: |x + 2| \(\ge\)0 \(\forall\)x
|x2 - 4| \(\ge\)0 \(\forall\)x
=> |x + 2| + |x2 - 4| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: x + 2 + x2 - 4 = 0
=> x2 + x - 2 = 0
=> x2 + 2x - x - 2 = 0
=> x(x + 2) - (x + 2) = 0
=> (x - 1)(x + 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\left(l\right)\\x=-2\end{cases}}\)
\(a,\left(3x+1\right)^3=-27\)
\(\Leftrightarrow3x+1=\sqrt[3]{-27}\)
\(\Leftrightarrow3x+1=-3\)
\(\Leftrightarrow3x=-4\Leftrightarrow x=-\frac{4}{3}\)
b, \(|2,5-x|=1,3\)
\(Th1:2,5-x=1,3\Leftrightarrow x=2,5-1,3\)
\(\Leftrightarrow x=1,2\)
\(Th2:x-2,5=1,3\Leftrightarrow x=1,3+2,5\)
\(\Rightarrow x=3,8\)
c, \(0,5-|x-3,5|=0\)
\(th1:0,5-x+3,5=0\Leftrightarrow4-x=0\)
\(\Rightarrow x=4\)
\(Th2:0,5+x-3,5=0\Leftrightarrow x-3=0\)
\(\Rightarrow x=3\)
d, \(|x+2|+|x^2-4|=0\)
\(x+2=0\Leftrightarrow x=-2\)
b) \(3^{x+1}=9^x\)
\(3^{x+1}=\left(3^2\right)^x\) c)
\(3^{x+1}=3^{2x}\)
\(\Rightarrow x+1=2x\)
\(1=2x-x\)
\(1=x\)
Vậy x=1
\(2.\)
\(a.\)
Ta có : \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{332}< 3^{223}\)
\(b.\)
Ta có : \(90^{20}=\left(9^2\right)^{10}=81^{10}\)
Vì \(81^{10}< \) \(9999^{10}\)
\(\Rightarrow99^{20}< 9999^{10}\)
\(3.\)
\(a.\)
Ta có : \(\left(2x+1\right)^2=4\)
\(\Rightarrow2x+1=\pm\sqrt{4}=\pm2\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=2\\2x+1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(b.\)
\(\left(3x-1\right)^3=27\)
\(\Rightarrow\left(3x-1\right)^3=3^3\)
\(\Rightarrow3x-1=3\)
\(\Rightarrow x=\dfrac{4}{3}\)
\(c.\)
\(\left(3x-1\right)^3=-\dfrac{8}{27}\)
\(\Rightarrow\left(3x-1\right)^3=\left(-\dfrac{2}{3}\right)^3\)
\(\Rightarrow3x-1=-\dfrac{2}{3}\)
\(\Rightarrow x=\dfrac{1}{9}\)
1 a) 2.16>2n>4 => 25>2n>22 => 5>n>2 => n=3;4
b) 9.27<3n<243 => 33<3n<35 => 3<n<5 => n=4
c) 125>5n+1>25 => 53>5n+1>52 =>3>n+1>2 => 3-1>n+1-1>2-1
=> 2>n>1 => không có giá trị nào của n để 2>n>1 khi n là số tự nhiên
2 a) 2332<2333 mà 2333=23.111=8111
3223>3222 mà 3222=32.111=9111
Vì 8111<9111 => 2333<3222 => 2332<3233
b) 9920=992.10=980110 mà 980110<999910 nên 9920<999910
3 a) (2x+1)2=4=22 => 2x+1=2 => x=\(\dfrac{1}{2}\)
b) (3x-1)3=27=33 => 3x-1=3 => x=\(\dfrac{4}{3}\)
c) (3x-1)3=-8/27=(-2/3)3 => 3x-1=-2/3 => x=\(\dfrac{1}{9}\)