\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau sau đây:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{\left(y+z+1\right)}{ }+\frac{\left(x+z+2\right)}{x+y+z}+\frac{\left(x+y-3\right)}{ }=2vi\left(x+y+z\ne0\right).Nênx+y+z=0,5\)

Thay kết quả này vào đề bài, ta được các phép tính như sau:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z+3}{z}=2\)
 

Tức: \(\frac{1,5-x}{x}=\frac{2,5-y+2}{y}=\frac{0,5-2}{z}=2\)

Vậy: \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{-5}{6}\)

Chúc bạn học tốt nha!

18 tháng 10 2016

mik suy nghĩ mãi ms ra đấy

11 tháng 10 2019

Ta có

\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)

Ap dụng  tính chất DTSBN

\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)

Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với

11 tháng 10 2019

Bạn còn thiếu 1 câu b mà

13 tháng 8 2017

ta co \(\frac{x+z+2}{y}\)=\(\frac{y+z+1}{x}\)=\(\frac{x+y-3}{z}\)=\(\frac{x+z+2+y+z+1+x+y-3}{x+y+z}\)

=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)=>\(x+y+z\)=\(\frac{1}{2}\)

=>\(\frac{x+z+2}{y}\)=\(\frac{1}{\frac{1}{2}}\)=2 =>\(\frac{x+z+2}{y}\)+\(1\)=\(3\)

=>\(\frac{x+y+z+2}{y}\)=\(3\)=>\(\frac{5}{\frac{2}{y}}\)=\(3\) =>\(y\)=\(\frac{5}{6}\)

tinh x ,z cung tuong tu nhu vay

14 tháng 8 2017

ê hoàn ơi mày là thằng gà, hồi trc mày còn bảo tao cách làm vậy o tao voi nhe thang hoan kia

mà bây giờ mày quên là sao, ngu ko tả nổi, mà mày k ch

28 tháng 6 2019

a)Theo đề bài và t/c dãy tỉ số bằng nhau suy ra:

\(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)(1)

Mặt khác \(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\) .

Do đó \(x+y+z=\frac{1}{2}\Rightarrow x+y=\frac{1}{2}-z;...\text{tương tự mấy cái kia}\)

Suy ra \(\frac{x}{z+y+1}=\frac{1}{2}\Leftrightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Leftrightarrow\frac{2x}{3-2x}=\frac{1}{2}\)

\(\Leftrightarrow4x=3-2x\Leftrightarrow x=\frac{1}{2}\) .Tương tự với hai phân thức kia ta được: \(x=y=z=\frac{1}{2}\)

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

31 tháng 7 2020

ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

31 tháng 7 2020

a,Sử dụng tính chất của dãy tỉ số bằng nhau

 \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)

\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)

20 tháng 8 2016

a)  \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)

\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)

Thay vào lần lượt ta có:

\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)

\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)

\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)

11 tháng 6 2017

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{y+x-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=2\)

Mặt khác , ta cũng có :

\(\hept{\begin{cases}y+z+1=2x\\z+x+2=2y\\x+y-3=2z\end{cases}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+2=2y\\x+y+z-3=2z\end{cases}}}\Rightarrow\hept{\begin{cases}3=3x\\4=2y\\-1=2z\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\\z=-\frac{1}{2}\end{cases}}\)

11 tháng 6 2017

Theo tính chất dãy tỉ số bằng nhau có:

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+z+x+2+x+y-3}{x+y+z}\)\(=\frac{2x+2y+2z}{x+y+z}=\frac{1}{x+y+z}\)

Ta có \(\frac{2x+2y+2z}{x+y+z}=\frac{1}{x+y+z}\)

\(\Rightarrow2x+2y+2z=1\Rightarrow\left(x+y+z\right)=\frac{1}{2}\)

Mình làm được tới đây thôi.

9 tháng 3 2020

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)

\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)

\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)

2=\(\frac{1}{x+y+z}\)(1)

Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)

Từ(1)=> x+y+1=2x(3)

             x+z+2=2y(4)

            z+y-3=2z(5)

Thay(2) vào (4) ta được: 0,5-y+2=2y

                              =>    2,5=3y

                             => y=\(\frac{5}{6}\)

Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x

                                            \(\frac{11}{6}\)=x

Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:

\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5

z=\(\frac{-13}{6}\)

      Vậy ............

chúc bn học tốt.

k cho mik nha                                    

18 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\)

\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\)

\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(\left(x+y+z\ne0\right).\)Do đó  x+y+z=0,5

Thay kết quả này vào đề bài ta được:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)

tức là: \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)

Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{-5}{6}\)

^...^ ^_^ eoeo vui

 

21 tháng 7 2016

bạn ơi cho mình chút ở chỗ do đó x+y+z=0,5 vì sao z bạn