Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)
=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)
b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)
c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
Có \(xyz=-528\)
\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)
\(\Leftrightarrow528\cdot k^3=-528\)
\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)
Với k=-1 thì : x=-8;y=-6;x=-11
a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)
\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)
=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)
c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528
=> k3 = -1 => k = -1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
Ta có : \(\frac{x}{y}=\frac{9}{11}\Rightarrow\frac{x}{9}=\frac{y}{11}\left(0< x,y< 60\right)\)
và x+y = 60
Áp dụng tính chất dãy tỉ số bằng nhau ta co:
\(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)
Do đó: \(\frac{x}{9}=3\Rightarrow x=3.9=27\)
\(\frac{y}{11}=3\Rightarrow y=3.11=33\)
Vậy x= 27
y= 33
1/x - y/ 11 = -2/11
<=> 1/x = -2/11 + y/11
<=> 1/x = y-2 / 11 <=> x . ( y-2) = 11
=> x , y-2 thuộc Ư(11) = { 1 , -1 , -11 , 11 }
thay vào rồi tìm x,y là ra
chúc hok tốt