K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

(x-1000)/24+(x-998)/26+(x-996)/28 = 3

Lời giải:

  1. Tập xác định của phương trình

  2. Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

  3. Chia cả hai vế cho cùng một số

  4. Đơn giản biểu thức

  5. Lời giải thu được

Ẩn lời giải 

Kết quả: Giải phương trình với tập xác định

x=1024

27 tháng 1 2022

Đây đâu phải toán lớp một mà là toán lớp 6 thì có

20 tháng 8 2016

60 = 3.4.5 
Ta cần c/m xyz chia hết cho 3; 4 và 5. 
Xét x² + y² = z² 

* Giả sử cả x; y và z đều không chia hết cho 3. 
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1. 
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 ) 
Vô lí vì z² ≡ 1 ( mod 3 ) 
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠) 

* Giả sử cả x; y và z không chia hết cho 4. 
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3. 
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1. 
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại } 
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4 
*TH 3 : Có 1 số chẵn và 2 số lẻ. 
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )} 
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau : 

........z...............x...........z-... 
....4m+1.......4n+1.........4(m-n)....... 
....4m+3.......4n+1.......4(m-n)+2....... 
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn. 

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣) 

* Giả sử cả x; y và z không chia hết cho 5. 
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1. 
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại } 
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại } 
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại } 

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦) 
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

20 tháng 8 2016

60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²

* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)

* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :

........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)

* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

20 tháng 8 2016

kho that

4 tháng 10 2015

tổng 3 số là

(2+3+5):2=5

số x là

5-3=2

số y là

2-2=0

số z là

5-2=3

ĐS: