Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2013}{2}=\frac{y-2014}{6}=\frac{z-2015}{8}\)
\(\Rightarrow\frac{x-2013}{2}=\frac{2y-4028}{12}=\frac{3z-6045}{24}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x-2013}{2}=\frac{2y-4028}{12}=\frac{3z-6045}{24}=\frac{\left(x-2013\right)+\left(2y-4028\right)-\left(3z-6045\right)}{2+12-24}=\frac{5}{-10}=\frac{-1}{2}\)
Từ đó suy ra :
\(\frac{x-2013}{2}=\frac{-1}{2}\Rightarrow x-2013=-1\Rightarrow x=2012\)
\(\frac{2y-4028}{12}=\frac{-1}{2}\Rightarrow2y-4028=-6\Rightarrow2y=4022\Rightarrow y=2011\)
\(\frac{3z-6045}{24}=\frac{-1}{2}\Rightarrow3z-6045=-12\Rightarrow3z=6033\Rightarrow z=2011\)
Giải :
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2 (1)
(2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2 (2)
Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2
Ta có : \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\)
Suy ra \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-y}{2013-2014}=\dfrac{x-y}{-1}\)
Ta có:\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)
\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)
\(\ge\left|x-2013+2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)
\(=3+\left|x-2014\right|+\left|y-2015\right|\)
\(\ge3+0+0=3\)
Mà \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)
\(\Rightarrow\) Dấu "=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\left(1\right)\\x=2014\left(2\right)\\y=2015\end{cases}}\)
Dễ thấy \(\left(2\right)\) thỏa mãn \(\left(1\right)\) nên \(x=2014;y=2015\)
a) \(|4-2x|+|x-2|=3-x\) ( 1 )
+) Với : x ≥ 2 , ta có :
( 1 ) \(\Leftrightarrow2x-4+x-2=3-x\)
\(\Leftrightarrow4x=9\)
\(\Leftrightarrow x=\dfrac{9}{4}\left(TM\right)\)
+) Với : x < 2 , ta có :
( 1 ) \(\Leftrightarrow4-2x+2-x=3-x\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
KL........
b) Vô nghiệm
Đề bạn hình như hơi sai thì phải, nhưng nếu tìm x thì mình giải như sau
Ta có: \(\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}=\frac{x-4}{2013}\)
\(\Rightarrow\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-4}{2013}+\frac{x-3}{2014}\)
\(\Rightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1=\frac{x-4}{2013}-1+\frac{x-3}{2014}-1\)
\(\Rightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2013}+\frac{x-2017}{2014}\)
\(\Rightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Rightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}< 0\)
\(\Rightarrow x-2017=0\)
\(\Rightarrow x=2017\)
\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow\frac{2014.2015.x}{2013.2014.2015}=\)\(\frac{y.2013.2015}{2013.2014.2015}=\frac{2013.2014.z}{2013.2014.2015}\)
\(\Rightarrow2014.2015.x=y.2013.2015=z.2013.2014\)
\(\Rightarrow x=2013;y=2014;z=2015\)
Đến đây bạn tự thay vào rồi tính nhé!
Vì | y - 2013|≥0 nên (x-2013) (2015 - x )≥. Vậy x-2013 và 2015 - x cùng dấu
=>x-2013≥0 hoặc x-2013≤0
2015-x≥0 2015-x≤0
=>x≥2013 hoặc x≤2013
x≤2015 x≥2015
=2015≥x≥2013 hoặc x≤2013;x≥2015(vô lí)
Ta có: khi x=2013 thì x-2013=0
khi x=2015 thì 2015-x=0
+>Khi x=2013 hoặc x=2015 thì (x-2013) (2015 - x )=0 =>| y - 2013|=0=>y=2013
+>Khi x=2014 thì (x-2013) (2015 - x )=(2014-2013)(2015-2014)=1=>| y - 2013|=1=>
y-2013=1 hoặc y-2013=-1
y=2014 hoặc y=2012
Vậy khi x=2013 hoặc x=2015 thì y =2013
khi x=2014 thì y=2014 hoặc y=2011