K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

(x+1)(x+2)(x+3)(x+4)-8=0=>[(x+1)(x+4)][(x+2)(x+3)-8=0

=>(x2+5x+4)(x2+5x+6)-8=0

Đặt t=x2+5x+5=>(t-1)(t+1)-8=0=>t-9=0=>(t+3)(t-30

=>t=3 hoặc t=-3

=>x2+5x+5=3 hoặc x2+5x+5=-3

đến đây tự tìm x tiếp nhá,mk  ko tìm đc

25 tháng 10 2019

( x + 1 )( x + 2)( x + 3 )( x + 4 ) - 8 = 0

\(\Rightarrow\)[ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 8 = 0

\(\Rightarrow\)( x2 + 5x + 4 )( x+ 5x + 6 ) - 8 = 0

\(\Rightarrow\) ( x+ 5x + 4 )[ ( x+ 5x + 4 ) + 2 ] - 8 = 0

\(\Rightarrow\)[ ( x+ 5x + 4 )+ 2( x+ 5x + 4 ) + 1 ] - 9 = 0

\(\Rightarrow\)( x+ 5x + 5 )- 32

\(\Rightarrow\)( x2 + 5x + 8 )( x+ 5x + 2 )

23 tháng 8 2021

3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

23 tháng 8 2021

4x.(x+1)-8(x+1)=0

(4x-8)(x+1)=0

suy ra x=2 hoặc x=-1

3 tháng 7 2019

a) (x+2)(x+3)-(x-2)(x+5)=0

  \(x^2+3x+2x+6-x^2-5x+2x+10=0\) 

\(2x+16=0\) 

\(2x=-16\) 

\(x=-8\) 

Vậy......

b) (8-5x)(x+2)+4(x-2)(x+1)+2(x-2)(x+2)=0

  \(8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2+4x-4x-8=0\) 

  \(-6x+x^2=0\) 

 \(x\left(-6+x\right)=0\) 

=> x=0   hoặc  -6+x=0  <=>x=6

Vậy \(x\in\left\{0;6\right\}\)

3 tháng 7 2019

a) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+2\right)x+\left(x+2\right).3-\left(x+5\right)x+\left(x+5\right).2=0\)

\(\Leftrightarrow x^2+2x+3x+6-x^2+5x+2x+10=0\)

\(\Leftrightarrow12x+16=0\)

\(\Leftrightarrow12x=-16\)

\(\Leftrightarrow x=\frac{-4}{3}\)

Vậy...

\(a,\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(x^2+5x+6-x^2-3x+10=0\)

\(2x+16=0\)

\(2x=-16\)

\(x=-8\)

\(b,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)

\(8x+16-5x^2-10x+4x^2-4x-8+2x^2-8=0\)

\(x^2-6x=0\)

\(x\left(x-6\right)=0\)

\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)

3 tháng 7 2019

\(a,\)\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow x^2+5x+6-x^2-3x+10=0\)

\(\Rightarrow2x=-16\Leftrightarrow x=-8\)

\(b,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow8x+16-5x^2-10x+4\left(x^2-x+2\right)+2\left(x^2-4\right)=0\)

\(\Rightarrow8x+16x-5x^2-10x+4x^2-4x+8+2x^2-8=0\)

\(\Rightarrow x^2+10x=0\Rightarrow x\left(x+10\right)=0\Rightarrow x\in\left\{0;-10\right\}\)

21 tháng 7 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 = 4

<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy S = { 5 ; 1 }

b) x2 - 9 = 0

<=> x2 = 9

<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy S = { 3 ; -3 }

c) x( x - 2x ) - x2 - 8 = 0

<=> x2 - 2x2 - x2 - 8 = 0

<=> -2x2 - 8 = 0

<=> -2x2 = 8

<=> x2 = -4 ( vô lí )

<=> x = \(\varnothing\)

Vậy S = { \(\varnothing\)}

21 tháng 7 2020

d) 2x( x - 1 ) - 2x2 + x - 5 = 0

<=> 2x2 - 2x - 2x2 + x - 5 = 0

<=> -x - 5 = 0

<=> -x = 5

<=> x = -5

Vậy S = { -5 }

e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0 

<=> x2 - 3x - ( x2 - x - 2 ) = 0

<=> x2 - 3x - x2 + x + 2 = 0

<=> - 2x + 2 = 0

<=> -2x = -2

<=> x = 1

Vậy S = { 1 }

f) x( 3x - 1 ) - 3x2 - 7x = 0

<=> 3x2 - x - 3x2 - 7x = 0

<=> -8x = 0

<=> x = 0

Vậy S = { 0 }