Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x_<2--> x+1/2_<5/2 mà -|x-2/3|_<0 nên Max N = 5/2 khi và chỉ khi x=2
\(-\left|x-\frac{2}{3}\right|\le0\Rightarrow\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}\)
\(\Rightarrow x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}+x\le\frac{1}{2}+2=\frac{5}{2}\)
Dấu "=" xảy ra <=> x=2/3
Vậy MaxN=5/2 <=>x=2/3
a ) \(A=0,6+\left|\dfrac{1}{2}-x\right|\)
Ta có : \(\left|\dfrac{1}{2}-x\right|\ge0\)
\(\Leftrightarrow0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Vậy GTNN là 0,6 khi \(x=\dfrac{1}{2}.\)
- Đề ghi ko hiểu ?
b ) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
Ta có : \(\left|2x+\dfrac{2}{3}\right|\ge0\)
\(\Leftrightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Vậy GTNN là \(\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\)
\(\left|\dfrac{1}{2}-x\right|\ge0\forall x\in R\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra khi:
\(\left|\dfrac{1}{2}-x\right|=0\Rightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
\(\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Dấu "=" xảy ra khi:
\(\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow2x=-\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
1. \(A=2x^2-5x-5\)
* Tại \(x=-2\) giá trị của biểu thức là :
\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)
\(A=8-\left(-10\right)-5=13\)
*Tại \(x=\dfrac{1}{2}\)
\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)
\(A=-7\)
Câu 3:
a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
..........................\(\Leftrightarrow x=3\)
Vậy MIN A = 9 \(\Leftrightarrow x=3\)
P/s: câu b coi lại đề
c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)
Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy .............................
Câu 5:
Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)
Để A nguyên thì \(2⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do đó:
\(x-3=-2\Rightarrow x=1\)
\(x-3=-1\Rightarrow x=2\)
\(x-3=1\Rightarrow x=4\)
\(x-3=2\Rightarrow x=5\)
Vậy .....................
Lời giải:
Thực hiện khai triển và rút gọn thu được:
\(B=\frac{x^3}{2}-\frac{1}{2}x^4+\frac{1}{2}x^2+\frac{1}{2}x^4-x^2\)
\(=\frac{x^3}{2}-\frac{x^2}{2}\)
a) Từ biểu thức rút gọn trên suy ra bậc của B(x) là $3$
b) \(B(\frac{1}{2})=\frac{\frac{1}{2^3}}{2}-\frac{(\frac{1}{2})^2}{2}=-\frac{1}{16}\)
c) \(B=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}=\frac{x.x(x-1)}{2}\)
Vì \(x(x-1)\) là tích 2 số nguyên liên tiếp nên \(x(x-1)\vdots 2\)
\(\Rightarrow \frac{x(x-1)}{2}\in\mathbb{Z}\)
\(\Rightarrow B=x.\frac{x(x-1)}{2}\in\mathbb{Z}\)
Ta có đpcm.
a: \(\Leftrightarrow\dfrac{23}{5}\cdot\dfrac{50}{23}< =x< =\dfrac{-13}{5}:\dfrac{7}{5}\)
=>10<=x<=-13/7
hay \(x\in\varnothing\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< =x< =\dfrac{-2}{3}\cdot\dfrac{-11}{12}\)
=>-13/9<=x<=22/36
hay \(x\in\left\{-1;0\right\}\)