\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\) (ĐKXĐ: \(x\notin\left\{-4;-5;-6;-7\right\}\))

<=> \(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}-\dfrac{1}{18}=0\)

<=> \(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}-\dfrac{1}{18}=0\)

<=> \(\dfrac{1}{x+4}-\dfrac{1}{x+7}-\dfrac{1}{18}=0\)

<=> \(\dfrac{18\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{18\left(x+4\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}=0\)

=> \(18\left(x+7\right)-18\left(x+4\right)-\left(x+4\right)\left(x+7\right)=0\)

<=> 18x + 18.7 - 18x - 18.4 - x2 - 7x - 4x - 28 = 0

<=> - x2 - 11x + 26 = 0

<=> (x - 2)(x + 13) = 0

<=> \(\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\) (nhận)

Vậy S = {-13; 2}

6 tháng 9 2017

Cân thử nào!

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{3}{x^2+11x+28}=\dfrac{1}{18}\)

\(\Rightarrow x^2+11x+28=54\)

\(\Rightarrow x^2+11x-26=0\)

\(\Rightarrow x^2-2x+13x-26=0\)

\(\Rightarrow x\left(x-2\right)+13\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

Vậy................

Chúc bạn học tốt!!!

21 tháng 5 2018

Xét mẫu 1: x2+9x+20=x2+4x+5x+20=x(x+4)+5(x+4)=(x+4)(x+5)

Xét mẫu 2: x2+11x+30=x2+5x+6x+30=x(x+5)+6(x+5)=(x+5)(x+6)

Xét mẫu3:x2+13x+42=x2+6x+7x+42=x(x+6)+7(x+6)=(x+6)(x+7)

Vậy .....=\(\dfrac{1}{\text{(x+4)(x+5)}}+\dfrac{1}{\text{(x+5)(x+6)}}+\dfrac{1}{\text{(x+6)(x+7)}}=\dfrac{1}{18}\)

<=>\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

<=>\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)=.....

NV
15 tháng 2 2019

ĐKXĐ: \(x\ne-4;-5;-6;-7\)

\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

14 tháng 2 2019

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\) ĐKXĐ:x\(\ne\)-4,-5,-6,-7

\(\Leftrightarrow\)\(\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow\)\(\dfrac{1}{x.\left(x+4\right)+5.\left(x+4\right)}+\dfrac{1}{x.\left(x+5\right)+6.\left(x+5\right)}+\dfrac{1}{x.\left(x+6\right)+7.\left(x+6\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\)\(\dfrac{1}{\left(x+4\right).\left(x+5\right)}+\dfrac{1}{\left(x+5\right).\left(x+6\right)}+\dfrac{1}{\left(x+6\right).\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\)\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\)\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\)\(\dfrac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\)\(\dfrac{3}{\left(x+4\right).\left(x+7\right)}=\dfrac{3}{54}\)

\(\Leftrightarrow\)(x+4).(x+7)=54

\(\Leftrightarrow\)x2+11x+28=54

\(\Leftrightarrow\)x2+11x-26=0

\(\Leftrightarrow\)x2+13x-2x-26=0

\(\Leftrightarrow\)x.(x+13)-2.(x+13)=0

\(\Leftrightarrow\)(x-2).(x+13)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\left(TM\right)\\x=-13\left(TM\right)\end{matrix}\right.\)

Vậy tập nghiệm của pt trên là S={-13;2}

14 tháng 2 2019

ĐKXĐ: \(x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow54=x^2+11x+28\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-13\left(TM\right)\end{matrix}\right.\)

2 tháng 4 2018

\(pt\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

NV
5 tháng 1 2019

ĐKXĐ: \(x\ne-4;-5;-6;-7\)

\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow54=x^2+11x+28\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

1 tháng 4 2018

ĐKXĐ: x khác -4; -5 ; -6 ; -7

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow54=x^2+11x+28\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

Vậy.........

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\left(đkxđ:x\ne-4;-5;-6;-7\right)\)

\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-13\left(tm\right)\end{matrix}\right.\)

23 tháng 4 2018

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\left(đkxđ:x\ne-4;-5;-6;-7\right)\)

\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-13\left(tm\right)\end{matrix}\right.\)

23 tháng 4 2018

\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\\ ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\\ \Rightarrow\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{\left(x^2+4x\right)+\left(5x+20\right)}+\dfrac{1}{\left(x^2+5x\right)+\left(6x+30\right)}+\dfrac{1}{\left(x^2+6x\right)+\left(7x+42\right)}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{x\left(x+4\right)+5\left(x+4\right)}+\dfrac{1}{x\left(x+5\right)+6\left(x+5\right)}+\dfrac{1}{x\left(x+6\right)+7\left(x+6\right)}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Rightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\\ \Rightarrow\dfrac{1}{x+5}-\dfrac{1}{x+7}=\dfrac{1}{18}\\ \Rightarrow\dfrac{18\left(x+7\right)}{18\left(x+5\right)\left(x+7\right)}-\dfrac{18\left(x+5\right)}{18\left(x+5\right)\left(x+7\right)}=\dfrac{\left(x+5\right)\left(x+7\right)}{18\left(x+5\right)\left(x+7\right)}\\ \Rightarrow18x+126-18x-90=x^2+5x+7x+35\\ \Leftrightarrow x^2+12x+35=36\\ \Leftrightarrow x^2+12x-1=0\\ \Leftrightarrow x^2+12x+36-37=0\\ \Leftrightarrow\left(x^2+12x+36\right)-37=0\\ \Leftrightarrow\left(x+6\right)^2-37=0\\ \Leftrightarrow\left(x+6+\sqrt{37}\right)\left(x+6-\sqrt{37}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+6+\sqrt{37}=0\\x+6-\sqrt{37}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6-\sqrt{37}\\x=\sqrt{37}-6\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\sqrt{37}-6;-\sqrt{37}-6\right\}\)

12 tháng 1 2018

b) \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x\left(x+4\right)+5\left(x+4\right)}+\dfrac{1}{x\left(x+5\right)+6\left(x+5\right)}+\dfrac{1}{x\left(x+6\right)+7\left(x+6\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{x+7}{\left(x+4\right)\left(x+7\right)}-\dfrac{x+4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=54\)

\(\Leftrightarrow x^2+11x+28-54=0\)

\(\Leftrightarrow x^2-2x+13x-26=0\)

\(\Leftrightarrow x\left(x-2\right)+13\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\) x - 2 = 0 hoặc x + 13 = 0

\(\Leftrightarrow\) x = 2 hoặc x = -13

Vậy x = 2 hoặc x = -13.

a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

=>(x+4)(x+7)=54

=>x^2+11x+28-54=0

=>(x+13)(x-2)=0

=>x=-13 hoặc x=2

b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)

=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)

=>x^2+6x+5=12

=>x^2+6x-7=0

=>(x+7)(x-1)=0

=>x=-7 hoặc x=1