Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a, \(\left(x+3\right)\left(x-3\right)-\left(x-3\right)^2\)
\(=\left(x-3\right)\left(x+3-x+3\right)\)
\(=9\left(x-3\right)=9x-27\)
b, \(\left(2x+1\right)^2+2\left(2x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(2x+1+x-1\right)^2=9x^2\)
c, \(x\left(x-3\right)\left(x+3\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-9\right)-\left(x^4-1\right)\)
\(=x^3-9x-x^4+1=-x^4+x^3-9x+1\)
c, x+x4=0
=>x(x+3)=0
=>x=0 hoặc x+3=0
=>x=0 hoặc x = -3
a) pt <=> ( x - 1 )3 + x2( x - 1 ) = 0
<=> ( x - 1 )[ ( x - 1 )2 + x2 ] = 0
<=> x = 1
Vậy pt có nghiệm x = 1
b) x2 + x - 12 = 0
<=> x2 - 3x + 4x - 12 = 0
<=> x( x - 3 ) + 4( x - 3 ) = 0
<=> ( x - 3 )( x + 4 ) = 0
<=> x = 3 hoặc x = -4
Vậy S = { 3 ; -4 }
c) x + x4 = 0
<=> x( x3 + 1 ) = 0
<=> x( x + 1 )( x2 - x + 1 ) = 0
<=> x = 0 hoặc x = -1
Vậy S = { 0 ; -1 }
a,\(x^3-3x^2+3x-1+x\left(x^2-x\right)=0\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)+x\left(x^2-x\right)=0\)
\(\Leftrightarrow\left(x-1\right)^3+x^2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)^2+x^2\right]=0\)
\(\Leftrightarrow x=1\)
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
c) ĐK: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2(x-11)}{x^2-4}\)
\(\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}\)
\(\Leftrightarrow \frac{x^2-7x-2}{(x-2)(x+2)}=\frac{2x-22}{(x-2)(x+2)}\)
\(\Rightarrow x^2-7x-2=2x-22\)
\(\Leftrightarrow x^2-9x+20=0\Leftrightarrow (x-4)(x-5)=0\Rightarrow x=4\) hoặc $x=5$
(đều thỏa mãn)
d) ĐK: \(x^2-6x+7\neq 0\)
PT \(\Leftrightarrow (x^2-6x+7)+\frac{14}{x^2-6x+7}-9=0\)
\(\Rightarrow (x^2-6x+7)^2-9(x^2-6x+7)+14=0\)
\(\Leftrightarrow (x^2-6x+7-2)(x^2-6x+7-7)=0\)
\(\Leftrightarrow (x^2-6x+5)(x^2-6x)=0\)
\(\Leftrightarrow (x-1)(x-5)x(x-6)=0\)
\(\Rightarrow x\in \left\{1;5;0;6\right\}\) (đều thỏa mãn)
Vậy.........
a) ĐKXĐ: $x\neq 1$
PT \(\Leftrightarrow \frac{x^2+x+1+2(x-1)}{(x-1)(x^2+x+1)}=\frac{3x^2}{x^3-1}\)
\(\Leftrightarrow \frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)
\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow 2x^2-3x+1=0\)
\(\Leftrightarrow (x-1)(2x-1)=0\)
Mà $x\neq 1$ nên $2x-1=0\Rightarrow x=\frac{1}{2}$ là nghiệm
b) ĐK: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{3-x}{2-x}=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{3-x}{2-x}=\frac{6-x}{3(x^2-4)}\)
\(\Leftrightarrow \frac{1}{x+2}+\frac{3-x}{x-2}=\frac{6-x}{3(x-2)(x+2)}\)
\(\Leftrightarrow \frac{-x^2+2x+4}{(x-2)(x+2)}=\frac{6-x}{3(x-2)(x+2)}\)
\(\Rightarrow 3(-x^2+2x+4)=6-x\)
\(\Leftrightarrow -3x^2+7x+6=0\)
\(\Leftrightarrow (x-3)(3x+2)=0\Rightarrow x=3\) hoặc $x=-\frac{2}{3}$
Vậy........
x3 + 3x2 + 3x = 7
<=> x3 + 3x2 + 3x - 7 = 0
<=> (x - 1)(x2 + 4x + 7) = 0
<=> x - 1 = 0 hoặc x2 + 4x + 7 khác 0
<=> x - 1 = 0
<=> x = 1
a) ( x2 + 3 x + 2 ) . ( x2 + 3x+ 3 ) - 2 =0
<=>x4 + 3x3 + 3x2 + 3x3 + 9x2 + 9x + 2x2 + 6x + 6 - 2 = 0
<=> x4 + 6x3 + 14x2 + 15x + 4 = 0
<=> x4 + 3x3 + 3x3 + x2 + 9x2 + 4x2 + 3x + 12x + 4 = 0
<=> x2 . ( x2 +3x + 1 ) + 3x . ( x2 +3x + 1 ) + 4. ( x2 + 3x + 1 ) = 0
<=> ( x2 + 3x + 1 ) . ( x2 + 3x + 4 ) = 0
<=> \(\orbr{\begin{cases}x^2+3x+1=0\\x^2+3x+4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=\frac{-3-\sqrt{5}}{2}\end{cases}}\)
\(x\notinℝ\)
<=> \(\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=\frac{-3-\sqrt{5}}{2}\end{cases}}\)
Nghiệm cuối cùng là : x1 = \(\frac{-3+\sqrt{5}}{2}\);x2 = \(\frac{-3-\sqrt{5}}{2}\)
b) ( x + 1 ) . ( x + 2 ) . ( x + 3 ) . ( x + 4 ) - 24 = 0
<=> ( x2 + 2x + x + 2 ) . ( x + 3 ) . ( x + 4 ) - 24 = 0
<=> ( x2 + 3.x + 2 ) . ( x+3) . ( x + 4 ) -24 = 0
<=> ( x3 + 3.x 2 + 3.x2 + 9x + 2x + 6 ) . ( x + 4 ) - 24 = 0
<=> ( x3 + 3x + 2 ) . ( x + 3 ) .( x + 4 ) = 0
<=> ( x3 + 3x2 + 3x2 + 9x + 2x + 6 ) . ( x + 4) - 24 = 0
<=> ( x3 + 6.x2 + 11.x + 6 ) . ( x + 4 ) -24 = 0
<=> x4 + 4.x3 + 6.x3 + 24.x2 + 11.x2 + 44.x + 6.x + 24 - 24 =0
<=> x4 + 10.x3+ 35. x2 + 50.x = 0
<=> x. ( x3 + 10.x2 + 35 .x + 50 ) = 0
<=> x. ( x3 + 5.x2 +5.x2 + 25.x+ 10 + 50 ) = 0
<=> x. [ x2 . ( x+5 ) + 5.x. ( x+5 ) + 10.( x + 5 ) ] = 0
<=> x. ( x + 5 ) . ( x2 + 5.x + 10 ) = 0
=> \(\hept{\begin{cases}x=0\\x+5=0\\x^2+5.x+10=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\\x=-5\\x\notinℝ\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
Nghiệm cuối cùng là : x1 = -5 ; x2 = 0
c) x3 + 3.x2 + 3x = 7
<=> x3 + 3.x2 + 3x - 7 = 0
<=> ( x + 1 )3 - 8 = 0
<=> ( x + 1 )3 = 8
<=> ( x + 1 ) 3 = 23
<=> x + 1 = 2
<=> x =1
Vậy x = 1
Bài 1 :
a, Ta có : \(3x-1=2x+4\)
=> \(3x-2x=4+1\)
=> \(x=5\)
Vậy phương trình có tập nghiệm \(S=\left\{5\right\}\)
b, Ta có : \(5x-2=0\)
=> \(5x=2\)
=> \(x=\frac{2}{5}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{2}{5}\right\}\)
c, Ta có : \(7x-4=3x+12\)
=> \(7x-3x=12+4\)
=> \(4x=16\)
=> \(x=4\)
Vậy phương trình có tập nghiệm \(S=\left\{4\right\}\)
d, Ta có : \(\frac{x-1}{2}+\frac{3x+2}{4}=\frac{x-7}{12}\)
=> \(\frac{6\left(x-1\right)}{12}+\frac{3\left(3x+2\right)}{12}=\frac{x-7}{12}\)
=> \(6\left(x-1\right)+3\left(3x+2\right)=x-7\)
=> \(6x-6+9x+6=x-7\)
=> \(6x+9x-x=6-7-6\)
=> \(14x=-7\)
=> \(x=-\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{-\frac{1}{2}\right\}\)
Bài 2 :
a, ĐKXĐ : \(\left\{{}\begin{matrix}x^2-2x+1\ne0\\x-1\ne0\end{matrix}\right.\)
=> \(x-1\ne0\)
=> \(x\ne1\)
- Ta có : \(\left(\frac{x+1}{x^2-2x+1}+\frac{1}{x-1}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{x+1}{\left(x-1\right)^2}+\frac{x-1}{\left(x-1\right)^2}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{2x}{\left(x-1\right)^2}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{2x}{\left(x-1\right)^2}\right)\left(\frac{x-1}{x}\right)-\frac{2}{x-1}\)
= \(\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\frac{x-2}{x-1}\)
\(a,\Leftrightarrow x^2+14x+49-x^2+3x=12\\ \Leftrightarrow17x=-37\Leftrightarrow x=-\dfrac{37}{17}\\ b,\Leftrightarrow x^2-x-2x+2=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(x^2+2x7+49-x^2+3x=12\Leftrightarrow17x=-37\Leftrightarrow x=\dfrac{-37}{17}\)
b) \(x^2-2x-x+2=0\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=\left(0\right)\Leftrightarrow x=1,x=2\)