Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+3\right)}=\frac{20}{41}\)
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}\right)=2.\frac{20}{41}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{40}{41}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{40}{41}\)
\(1-\frac{1}{x+2}=\frac{40}{41}\)
\(\frac{1}{x+2}=1-\frac{40}{41}\)
\(\frac{1}{x+2}=\frac{1}{41}\)
=> x + 2 = 41
=> x = 41 - 2
=> x = 39
Vẫy x = 39
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
=> \(1-\frac{1}{x+2}=\frac{40}{41}\)
=> \(\frac{1}{x+2}=\frac{1}{41}\)
=> x + 2 = 41
=> x = 39
(1/3x5+1/5x7+....+1/19x21)*x=9/7
(1/3-1/5+1/5-1/7+...+1/19-1/21)*x=9/7
(1/3-1/21)*x=9/7
2/7*x=9/7
=> x=9/7:2/7
=> x=9/2
Bạn leminhduc sai rùi @@
Ta xét :
B = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)
2 x B = \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)
2 x B = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)
2 x B = \(\frac{1}{3}-\frac{1}{21}\)=\(\frac{2}{7}\)
B = \(\frac{2}{7}:2\)
B = \(\frac{1}{7}\)
Thay B vào biểu thức ta có :
\(\frac{1}{7}.x=\frac{9}{7}\)
=> x = \(\frac{9}{7}:\frac{1}{7}\)=\(\frac{9}{7}.\frac{7}{1}\)=9
Vậy x = 9
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}.\frac{10}{11}y=\frac{2}{3}\)
=> \(\frac{5}{11}y=\frac{2}{3}\)
=>y = \(\frac{2}{3}:\frac{5}{11}\)
=> y = \(\frac{22}{15}\)
cho mk cái lời giải thích chỗ nhân 1/2 ý mk ko hiểu mong bn thông cảm
\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\frac{10}{11}.y=\frac{2}{3}\)
\(\frac{20}{11}.y=\frac{2}{3}\)
\(\Rightarrow y=\frac{11}{30}\)
Study well
=(2-1)*(2+1)+(4-1)*(4+1)+ ...+(2n-1)*(2n+1) =(2^2-1)+(4^2-1)+...+(4n^2-1) =(2^2+4^2+...+4n^2)-(1+1+...+1) =4(1^2+2^2+...n^2)-n n(n+1)(2n+1)/6: 1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6n^2=n 1x3+3x5+5x7+7x9+...+17x19 =4(1^2+2^2+...n^2)-n =4*n(n+1)(2n+1)/6-n; n=10,1x3+3x5+5x7+7x9+...+17x19=1530
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{x}-\frac{2}{\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow2-\frac{2}{x+2}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+2}=2-\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+2}=\frac{2017}{2016}\)
\(\Rightarrow2017.\left(x+2\right)=2.2016\)
\(\Rightarrow2017x+4034=4032\)
\(\Rightarrow2017x=-2\)
\(\Rightarrow x=-\frac{2}{2017}\)
Vậy......
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{x\cdot\left(x+2\right)}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(=1-\frac{1}{x+2}=\frac{2015}{2016}\)
=>\(\frac{1}{x+2}=\frac{1}{2016}\)
=>\(x+2=2016\)
=>\(x=2014\)
Vậy.......
1/1x3 + 1/3x5 + 1/5x7 + ... + 1/(2n+1)x(2n+3) = n+1/2n+3
2/1x3 + 2/3x5 + 2/5x7 + ... + 2/(2n+1)x(2n+3) = 2n+2/2n+3
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2n+1 - 1/2n+3 = 2n+2/2n+3
1 - 1/2n+3 = 2n+2/2n+3
Bn nào thông minh thế, ra bài này đố Tây lm đc, ai lm đc mk bái lm sư phụ lun, sửa đề đê
Ủng hộ mk nha ^_-
sửa đề tí nhé: \(x=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{197.199}\)
\(x=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right)\)
\(x=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{199}\right)\)
\(x=\frac{1}{2}.\frac{196}{597}\)
\(x=\frac{98}{597}\)
M = 5 + 53 + 55 + ... + 547 + 549
52M = 52(5 + 53 + 55 + ... + 547 + 549)
25M = 53 + 55 + 57 + ... + 549 + 551
25M - M = ( 53 + 55 + 57 + ... + 549 + 551) - (5 + 53 + 55 + ... + 547 + 549)
24M = 551 - 5
M = \(\frac{5^{51}-5}{24}\)
Đặt B =\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x\left(x+2\right)}\)
\(\Rightarrow2B=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x\left(x+x+2\right)}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{x+2}\)
Vì B= \(\frac{1}{9}\)\(\Rightarrow2B=\frac{1}{9}\cdot2=\frac{2}{9}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{3}-\frac{2}{9}=\frac{3}{9}-\frac{2}{9}=\frac{1}{9}\)
\(\Rightarrow x+2=9\)
\(\Rightarrow x=9-2=7\)
Vậy x=7