Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(P\)nguyên thì \(\frac{7}{\sqrt{x}-3}\)nguyên\(\left(ĐKXĐ:x\ne9;x\ge0\right)\)
Tương đương với \(\sqrt{x}-3\inƯ\left(7\right)=\left\{7;1;-1;-7\right\}\)
\(< =>\sqrt{x}\in\left\{10;4;2;-4\right\}\)(loại -4 vì không tmđk)
\(< =>x\in\left\{\sqrt{10};\sqrt{2};2\right\}\)
Vậy................
@dvc_new theo mình thì phải xét 2 TH x là số chính phương và x là số vô tỷ
Nếu x là số vô tỷ => \(\sqrt{x}\)vô tỷ => \(\sqrt{x}-3\)vô tỷ
\(\Rightarrow\frac{7}{\sqrt{x}-3}\notinℤ\)(loại)
Nếu x là số chính phương => \(\sqrt{x}\)là số thực
=> \(\sqrt{x}-3\)là số thực. Để \(\frac{7}{\sqrt{x}-3}\)có giá trị nguyên
=> \(\sqrt{x}-3\inƯ_{\left(7\right)}\)và \(\frac{7}{\sqrt{x}-3}\)có nghĩa phải có \(x\ge0;x\ne9\)
Sau đó lập bảng giống của @dvc_new
Ta có
\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)
Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1
\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)
=> x = (4; 16)
=> D = (0; 2)
1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3
\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)
Thế vào ta tìm được x = (1; 9; 25)
=> N = (- 3; 3;1)
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
\(ĐKXĐ:\hept{\begin{cases}x\ne9\\x\ne64\end{cases}}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x-3}}+\frac{2\sqrt{x}-24}{x-9}\right).\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\left(\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{x+3\sqrt{x}+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{x+8\sqrt{x}-3\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+8\right)-3\left(\sqrt{x}+8\right)}{\left(\sqrt{x-3}\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)
\(\Leftrightarrow P=\frac{7}{\sqrt{x}+3}\)
Để P nguyên \(\Leftrightarrow7⋮\sqrt{x}+3\) \(\left(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\right)\)
\(\Leftrightarrow\sqrt{x}+3\inƯ\left(7\right)\)
Ta có bảng sau :
\(\sqrt{x}+3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(\sqrt{x}\) | \(-2\)(ktm) | \(-4\)(ktm) | \(4\)(tm) | \(-10\)(ktm) |
\(x\) | \(ktm\) | \(ktm\) | \(16\) | \(ktm\) |
Vậy \(x=16\Leftrightarrow P\in Z\)
=> 7 chia hết căn x+3
căn x +3 thuộc Ư(7)=1;7;-1;-7
căn x = -2 ; 5 ; -4 ; -10
vì căn x >= 0
=> căn x = 5
x = 25