\(\frac{7}{\sqrt{x}+3}\)có giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

=> 7 chia hết căn x+3

căn x +3 thuộc Ư(7)=1;7;-1;-7

căn x = -2 ; 5 ; -4 ; -10

vì căn x >= 0

=> căn x = 5

x = 25

28 tháng 12 2021

dấu sao kia là dấu nhân nhé

28 tháng 12 2021

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

29 tháng 1 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne9\\x\ne64\end{cases}}\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x-3}}+\frac{2\sqrt{x}-24}{x-9}\right).\frac{7}{\sqrt{x}+8}\)

\(\Leftrightarrow P=\left(\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{7}{\sqrt{x}+8}\)

\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)

\(\Leftrightarrow P=\frac{x+3\sqrt{x}+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)

\(\Leftrightarrow P=\frac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)

\(\Leftrightarrow P=\frac{x+8\sqrt{x}-3\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}.\frac{7}{\sqrt{x}+8}\)

\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+8\right)-3\left(\sqrt{x}+8\right)}{\left(\sqrt{x-3}\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{7}{\sqrt{x}+8}\)

\(\Leftrightarrow P=\frac{7}{\sqrt{x}+3}\)

Để P nguyên \(\Leftrightarrow7⋮\sqrt{x}+3\)    \(\left(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\right)\)

\(\Leftrightarrow\sqrt{x}+3\inƯ\left(7\right)\)
Ta có bảng sau :

\(\sqrt{x}+3\)\(1\)\(-1\)\(7\)\(-7\)
       \(\sqrt{x}\)\(-2\)(ktm)\(-4\)(ktm)\(4\)(tm)\(-10\)(ktm)
            \(x\)      \(ktm\)       \(ktm\)    \(16\)        \(ktm\)

Vậy \(x=16\Leftrightarrow P\in Z\)

19 tháng 11 2016

Ta có

\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)

Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1

\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)

=> x = (4; 16)

=> D = (0; 2)

19 tháng 11 2016

1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3

\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)

Thế vào ta tìm được x = (1; 9; 25)

=> N = (- 3; 3;1)

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

12 tháng 9 2021

a,\(P=\frac{7}{\sqrt{x}+3}\Rightarrow\sqrt{x}+3\inƯ\left(7\right)=\left\{1;7\right\}\)

\(\sqrt{x}+3\)17
xloại16

b, Ta có : \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3>0\Rightarrow\hept{\begin{cases}\frac{7}{\sqrt{x}+3}\le\frac{7}{3}\\\frac{7}{\sqrt{x}+3}>0\end{cases}}\)

\(\Rightarrow0< P\le\frac{7}{3}\)mà \(P\in Z\)=> \(P\in\left\{1;2\right\}\)

Với \(P=\frac{7}{\sqrt{x}+3}=1\Rightarrow7=\sqrt{x}+3\Leftrightarrow x=16\)( tm )

Với \(P=\frac{7}{\sqrt{x}+3}=2\Rightarrow7=2\sqrt{x}+6\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)( ktm )