Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{x-\sqrt{x}}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\sqrt{x}}{\sqrt{x}-1}\)
=> đk: \(x\ge0;x\ne1\)
b) đk: \(x\ge0\)
c) đk: \(x\ge-2\)
\(\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\\ =\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(3\sqrt{x}+14\right)}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}\)
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
- \(\sqrt{\frac{2x^2+1}{7x}}\)ĐK \(\hept{\begin{cases}\frac{2x^2+1}{7x}\ge0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne0\end{cases}\Leftrightarrow}x>0}\)
- \(\frac{\sqrt{2x-1}}{x^2-9}=\frac{\sqrt{2x-1}}{\left(x-3\right)\left(x+3\right)}\)ĐK \(\hept{\begin{cases}2x-1\ge0\\\left(x-3\right)\left(x+3\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne3\\x\ne-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne3\end{cases}}}\)
- \(\sqrt{\frac{x+2}{5-x}}\)ĐK \(\hept{\begin{cases}\frac{x+2}{5-x}\ge0\\5-x\ne0\end{cases}}\)
- \(TH1:\hept{\begin{cases}x+2\ge0\\5-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x< 5\end{cases}\Leftrightarrow}-2\le x< 5}\)
- \(TH2:\hept{\begin{cases}x+2\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-2\\x>5\end{cases}VN}\)
Vậy đk là : \(-2\le x< 5\)
Bài làm:
đkxđ: \(\hept{\begin{cases}x-5\ne0\\x-2\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne5\\x\ge2\end{cases}}\)