Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2016}{-3}=-\frac{12}{x+2016}\)
\(\Rightarrow\left(x+2016\right)^2=-3.\left(-12\right)\)
\(\Rightarrow\left(x+2016\right)^2=36\)
\(\Rightarrow\left(x+2016\right)^2=6^2\)
\(\Rightarrow x+2016=6\)
\(\Rightarrow x=6-2016\)
\(\Rightarrow x=-2010\)
ta có :
\(\left(\frac{x}{3}-672\right)+\frac{\left(2016-x\right)}{13}+\frac{\left(x-2016\right)}{17}=0\)
hay \(\left(x-2016\right)\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{17}\right)=0\Leftrightarrow x=2016\)
\(2016x+x\frac{1}{2016}-2016=\frac{1}{2016}\)
\(\Rightarrow2016x-2016+x.\frac{1}{2016}-\frac{1}{2016}=0\)
\(\Rightarrow2016.\left(x-1\right)+\frac{1}{2016}.\left(x-1\right)=0\)
\(\Rightarrow\left(2016+\frac{1}{2016}\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2016+\frac{1}{1016}=0\text{ (loại vì }2016+\frac{1}{2016}>0\text{)}\text{ }\\x-1=0\end{cases}}\)
\(\Rightarrow x=1\)
\(2016x+x\frac{1}{2016}-2016=\frac{1}{2016}\)
\(\Leftrightarrow x\left(2016+\frac{1}{2016}\right)=\frac{1}{2016}+2016\)
\(\Leftrightarrow x=\left(2016+\frac{1}{2016}\right):\left(2016+\frac{1}{2016}\right)\)
\(\Leftrightarrow x=1\)
Bài 1 : dễ bạn tự làm được :)
Bài 2 :
Ta có :
\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có : B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì : 2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2015}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
\(1-\frac{1}{x+1}=1-\frac{2015}{2016}\)
\(\frac{1}{x+1}=\frac{1}{2016}\)
\(x=2016-1\)
\(\Rightarrow x=2015\)
(x+2016)^2=-12.(-3)
(x+2016)^2=36
x+2016=6 hoặc x+2016=-6
x=-2010 ,x=-2022