\(\frac{x-ab}{a+b}=\frac{x-bc}{b+c}=\frac{x-ca}{c+a}=a+b+c\\ \)       ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

a]  x= a/b+c=b/c+a=c/a+b=a+b+c/b+c+c+a+a+b=0

         => x=0

b] 

28 tháng 11 2019

co ai biet ko? Neu biet thi giup mk voi

22 tháng 2 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ca+cb+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b\left(a+c\right)+c\left(a+c\right)\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow a^{2009}=-b^{2009}\)

\(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{c^{2009}}\) (1)

\(\frac{1}{a^{2009}+b^{2009}+c^{2009}}=\frac{1}{c^{2009}}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\) (đpcm)

8 tháng 12 2015

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{abc}{\left(a+b\right).c}=\frac{abc}{a.\left(b+c\right)}=\frac{cab}{\left(c+a\right).b}\)

\(\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)

=> ac+bc=ab+ac=bc+ab

+) ac+bc=ab+ac=> bc=ab => c=a ( do b  khác 0 ) 

+) ab+ac=bc+ab=> ac=bc => a=b ( do c khác 0 )

=> a=b=c

Khi đó: \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

 

19 tháng 8 2015

bài 4 : Ta có : \(\frac{1+2y}{18}=\frac{1+4y}{24}\left(1\right)\)
\(\Rightarrow24+48y=18+72y \)
\(\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\left(2\right)\)
Thay y = \(\frac{1}{4}\) vào (2) ta được x = 5 (thõa mãn )

 

24 tháng 6 2015

giup di ma cac cau huhu

29 tháng 7 2019

Đề sửa lại là: Chứng minh \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) nhé.

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}.\)

Xét 2 trường hợp:

TH1: \(a+b+c=0\) thì \(\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị \(a;b;c\) (1)

TH2: \(a+b+c\ne0\) thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)

\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị \(a;b;c\) (2)

Từ (1) và (2) => \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) không phụ thuộc vào các giá trị của \(a;b;c.\)

Chúc bạn học tốt!

29 tháng 7 2019

Ngan Vu Thi