Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(\Rightarrow x^8=x^7\)
\(\Rightarrow x^8:x^7=1\)
\(\Rightarrow x=1\)
Vậy x = 1
b) \(x^{10}=25.x^8\)
\(\Rightarrow x^{10}:x^8=25\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=\pm5\)
Vậy \(x=\pm5\)
a) \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\\ x^8=x^7\\ \Rightarrow x=1;x=-1\)
b)\(x^{10}=25.x^8\\ x^2=25\\ \Rightarrow\left\{{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
a) \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\)
\(\Rightarrow x^8=x^7\)
\(\Rightarrow x^8-x^7=0\)
\(\Rightarrow x^7.x-x^7=0\)
\(\Rightarrow x^7\left(x-1\right)=0\)
\(\Rightarrow x-1=0\) (vì x^7 \(\ne\)0)
\(\Rightarrow\) x=1
b) x^10=25x^8
\(\Rightarrow x^8.x^2-25x^8=0\)
\(\Rightarrow x^8\left(x^2-25\right)=0\)
\(\Rightarrow x^8=0\) hoặc \(x^2-25=0\)
1) x^8=0
\(\Rightarrow\) x=0(1)
2) x^2 -25=0
x^2=0+25
x^2=25
x^2=5^2 hay x^2=(-5)^2
Suy ra x=5 hoặc x=-5 (2)
Từ (1) và (2)\(\Rightarrow\)x\(\in\left\{0;5;-5\right\}\)
EM KO CHÉP ĐÁP ÁN NHÉ
a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\left(x\ne0\right)\)
\(\Rightarrow x^8=x^7\)
\(\Rightarrow x^8-x^7=0\)
\(\Rightarrow x^7.\left(x-1\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(x^7\ne0\) )
Vậy \(x=1\)
b ) \(x^{10}=25x^8\)
\(\Rightarrow x^{10}-25x^8=0\)
\(\Rightarrow x^8.\left(x^2-25\right)=0\)
\(\Leftrightarrow x^8=0\) hoặc \(x^2-25=0\)
Do đó \(x=0\) hoặc \(x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{0;5;-5\right\}\)
1. \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25=5^2\Leftrightarrow x=5\)
2. \(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=\frac{2^{40}}{2^{30}}=2^{10}\)
1)\(x^{10}=25x^8\)
\(\Rightarrow x^{10}:x^8=25\)
\(\Rightarrow x^2=5^2\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
2)\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
a) (x4)2 =x12 : x5
=>x8=x7
=>x=0 hoặc x=1
b) x10=25x8
=>x10:x8=25
x2=25
=>|x|=5
=>x=5 hoặc x=-5
Ta có: \(x^{10}=25\cdot x^8\)
- Với x=0 => x thỏa man đề bài.
- Với x khác 0 ta có:
\(x^{10}=25\cdot x^8\)
<=> \(\frac{x^{10}}{x^8}=25\)
<=> \(x^2=25\)
<=> \(x=\pm5\)
Vậy x\(\in\left\{-5;0;5\right\}\)
Ta có:
x10 = 25 . x8
=> x10 : x8 = 25
=> x2 = 25
=> x2 = 52 hoặc x2 = (-5)2
=> x = 5 hoặc x = -5