Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2\sqrt{x}+3=0\)
\(\Leftrightarrow2\sqrt{x}=-3\)
\(\Leftrightarrow\sqrt{x}=-\frac{3}{2}\)( loại )
\(b,\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\Leftrightarrow\frac{5}{12}\sqrt{x}=\frac{1}{2}\Leftrightarrow\sqrt{x}=\frac{6}{5}\Leftrightarrow x=\frac{36}{25}\)
\(c,\sqrt{x+3}+3=0\Leftrightarrow\sqrt{x+3}=-3\)( loại )
a) 1
b) 1 hoặc 0
c) 0
d) 2
Căn bản cx đã muộn nên mk làm ngắn gọn, nếu bn cần lời giải chi tiết hãy add mk để có lời giải chi tiết nhé!
1.
ĐKXĐ: \(x\ge0\) cho tất cả các câu
a) x = 6 (thỏa mãn)
b) vô nghiệm vì VT≥0 mà VP < 0
c) x = 5 (thỏa mãn)
d) \(\sqrt{x}=\left|-31\right|=31\)
x = 961(thỏa mãn)
bài 2 tương tự
Bài 2:
a) \(x^2-23=0\)
\(\Rightarrow x^2=0+23\)
\(\Rightarrow x^2=23\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{23}\\x=-\sqrt{23}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{23};-\sqrt{23}\right\}.\)
b) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7-0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{7}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{49}\)
\(\Rightarrow x=49\)
Vậy \(x=49.\)
Chúc bạn học tốt!
a) \(2\sqrt{x}+3=0\)
\(2\sqrt{x}=-3\)
\(\sqrt{x}=\frac{-3}{2}\)
\(x=\frac{9}{4}\)
vậy \(x=\frac{9}{4}\)
b) \(\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)
\(\frac{5}{12}\sqrt{x}=\frac{1}{3}+\frac{1}{6}\)
\(\frac{5}{12}\sqrt{x}=\frac{1}{2}\)
\(\sqrt{x}=\frac{1}{2}:\frac{5}{12}\)
\(\sqrt{x}=\frac{6}{5}\)
\(x=\frac{36}{25}\)
vậy \(x=\frac{36}{25}\)
c) \(\sqrt{x+3}+3=0\)
\(\sqrt{x+3}=-3\)
\(\Rightarrow x\in\varnothing\) vì ko thỏa mãn ĐKXĐ của căn thức \(x\ge0\)
hay nói khác đi căn thức \(\sqrt{x+3}\) ko có nghĩa
vậy \(x\in\varnothing\)
a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)
\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)
\(\Leftrightarrow x=225\)
b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
Vậy ....
c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
Vậy x = 0
d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy x = 1
\(a,ĐK:x\ge-2\)
\(\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\Rightarrow x=7\left(Tm\right)\)
\(b,\sqrt{x^2+3}=\sqrt{7}\)
\(\Leftrightarrow x^2+3=7\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
\(c,\sqrt{x}=0\Rightarrow x=0\)
\(d,\sqrt{x}=-3\)
Vì \(\sqrt{x}\ge0;-3< 0\)=> pt vô nghiệm
\(e,3\sqrt{x}=1\)
\(\Rightarrow\sqrt{x}=\frac{1}{3}\Rightarrow x=\frac{1}{9}\)
\(g,4-5\sqrt{x}=-1\)
\(\Rightarrow5\sqrt{x}=5\)
\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
a,\(\sqrt{x+2}=3\Leftrightarrow x+2=3^2\Leftrightarrow x=9-2=7\)
b,\(\sqrt{x^2+3}=\sqrt{7}\Leftrightarrow x^2+3=7\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
c,\(\sqrt{x}=0\Leftrightarrow x=0\)
d,\(\sqrt{x}=-3\Leftrightarrow x=\left(-3\right)^2\Leftrightarrow x=9\)
e,g tương tự các câu trên bạn tự làm ik mk mỏi tay lắm r
\(a,\sqrt{x}=7\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\) \(\sqrt{x}=\sqrt{49}\)
\(\Leftrightarrow\) \(x=49\)
Kết hợp với ĐK x >= 0 \(\Rightarrow\) x=49 (t/m )
vậy x=49
\(\)
\(b,\sqrt{x+1}=11\left(ĐKXĐ:x\ge-1\right)\)
\(\Leftrightarrow\sqrt{x+1}\) = \(\sqrt{121}\)
\(\Leftrightarrow\) \(x+1=121\)
\(\Leftrightarrow\) \(x=120\) kết hợp với ĐK x >= -1 \(\Rightarrow\) x=120 ( t/m )
Vậy x=120
\(a.\)
\(x-3\sqrt{x}=0\)
\(\Rightarrow\left(\sqrt{x}\right)^2-3\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\\sqrt{x}-3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\\sqrt{x}=3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=9\end{array}\right.\)
Vậy : \(x\in\left\{0;9\right\}\)