Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(|5\left(2x+3\right)\ge0\)
\(|2\left(2x+3\right)|\ge0\)
\(|2x+3|\ge0\)
\(\Rightarrow|5\left(2x+3\right)|+|\left(2x+3\right)|+|2x+3|\ge0\)
\(\Rightarrow5\left(2x+3\right)+2\left(2x+3\right)+2x+3=16\)
\(\Rightarrow10x+15+4x+6+2x+3=16\)
\(\Rightarrow\left(10x+4x+2x\right)+\left(15+6+3\right)=16\)
\(\Rightarrow16x+24=16\)
\(\Rightarrow24=16x-16\)
\(\Rightarrow24=x\)
Vậy x=24
\(3^x+3^{x+2}=270\)
\(\Rightarrow3^x+3^x.3^2=270\)
\(\Rightarrow3^x\left(1+3^2\right)=270\)
\(\Rightarrow3^x.10=270\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
Vậy x = 3
c) \(\left|x-1\right|=3\)
\(\Rightarrow\left[\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{4;-2\right\}\)
a ) \(3^x+3^{x+2}=270\)
\(\Leftrightarrow3^x.1+3^x.3^2=270\)
\(\Leftrightarrow3^x.\left(1+3^2\right)=270\)
\(\Leftrightarrow3^x=27\)
\(\Leftrightarrow x=3\)
Vậy x = 3.
b ) \(\left|2x+1\right|+\left|x-3\right|=5\)
\(\Leftrightarrow\left|2x+1\right|+\left|3-x\right|=5\)
\(\Leftrightarrow\left|2x+1+3-x\right|=5\)
\(\Leftrightarrow\left|x+4\right|=5\)
\(\Leftrightarrow x=1\)
Vậy x = 1. ( không chắc lắm )
c ) \(\left|x-1\right|=3\)
\(\Leftrightarrow\left[\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy x = 4 và x = -2.
Ta có : \(A=6x^3-x\left(x+2\right)+4\left(x+3\right)=6x^3-x^2-2x+4x+12\)
\(=6x^3-x^2+2x+12\)
\(B=-x\left(x+1\right)-\left(4-3x\right)+x^2\left(x-2\right)=-x^2-x-4+3x+x^3-2x^2\)
\(=-3x^2+2x-4+x^3\)
a, \(A+B=6x^3-x^2+2x+12-3x^2+2x-4+x^3\)
\(=7x^3-4x^2+4x+8\)
b, \(B-A=-3x^2+2x-4+x^3-6x^3+x^2-2x-12\)
\(=-2x^2-16-5x^3\)
a) x= ± 3
b) (x+3)(x-3)=x2-32=x2-9=6x
=>x2=6x+9
=> x2=3(2x+3)
vì 3 khác với 2x+3 mà đề lại cho x^2 => x vô nghiệm