Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(3\left(2x-1\right)-3x\left(-x+2\right)=5x-\left(1-3x\right)\cdot x\\ 6x-3+3x^2-6x=5x-x+3x^2\\ 3x^2-3=4x+3x^2\\ 3x^2-3x^2=4x+3\\ 4x+3=0\\ 4x=-3\\ x=\frac{-3}{4}\)
Vậy \(x=\frac{-3}{4}\)
b, \(x-\frac{x-3}{4}=3-\frac{x-3}{12}\\ \frac{4x-x-3}{4}=\frac{36-x-3}{12}\\ \frac{3x-3}{4}=\frac{33-x}{12}\\ \Rightarrow12\left(3x-3\right)=4\left(33-x\right)\\ 36x-36=132-4x\\ 36x+4x=132+36\\ 40x=168\\ x=\frac{168}{40}=\frac{21}{5}\)
Vậy \(x=\frac{21}{5}\)
Bậc của đa thức A ( x ) : 5
Bậc của đa thức B ( x ) : 5
Hệ số cao nhất của đa thức A ( x ) : 1
Hệ số cao nhất của đa thức B ( x ) : - 1
Hệ số tự do của đa thức A ( x ) : - 7
Hệ số tự do của đa thức B ( x ) : - 1
a) 2|2/3 - x| = 1/2
|2/3 - x| = 1/4
|2/3 - x| = 1/4 hoặc |2/3 - x| = -1/4
Xét 2 TH...
a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)
b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)
c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)
\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)
d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)
\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)
a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)
<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)
<=> \(\sqrt{x}+8=28\)
<=> \(\sqrt{x}=28-8\)
<=> \(\sqrt{x}=20\)
<=> \(\left(\sqrt{x}\right)^2=20^2\)
<=> x = 400
=> x = 400
b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)
<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)
<=> \(3\sqrt{x}+5=\sqrt{x}+12\)
<=> \(3\sqrt{x}=\sqrt{x}+12-5\)
<=> \(3\sqrt{x}=\sqrt{x}+7\)
<=> \(3\sqrt{x}-\sqrt{x}=7\)
<=> \(2\sqrt{x}=7\)
<=> \(\sqrt{x}=\frac{7}{2}\)
<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)
<=> \(x=\frac{49}{4}\)
=> \(x=\frac{49}{4}\)
c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)
<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)
<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)
<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)
<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)
<=> \(8\sqrt{x}=6\sqrt{x}+4\)
<=> \(8\sqrt{x}-6\sqrt{x}=4\)
<=> \(2\sqrt{x}=4\)
<=> \(\sqrt{x}=2\)
<=> \(\left(\sqrt{x}\right)^2=2^2\)
<=> x = 4
=> x = 4
d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)
<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)
<=>\(2\sqrt{3x}=6\sqrt{3x}\)
<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)
<=>\(-4\sqrt{3x}=0\)
<=> \(\sqrt{3x}=0\)
<=> \(\left(\sqrt{3x}\right)^2=0^2\)
<=> 3x = 0
<=> x = 0
=> x = 0
Mình viết nhầm, phần a là 1/2x nhé mn!