Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b, \(x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x^2=-1\left(voly\right)\end{cases}\Leftrightarrow}x=-1\)
c, \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
d, \(2x\left(3x-5\right)=10-6x\)
\(\Leftrightarrow6x^2-10x-10+6x=0\)
\(\Leftrightarrow\left(6x^2+6x\right)-\left(10x+10\right)=0\)
\(\Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(6x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\6x-10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\6x=10\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
a)
\(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-1\end{array}\right.\)
Vậy x = 2 ; x = - 1
b)
\(x^3+x^2+x+1=0\)
\(\Leftrightarrow x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
Vì x2+1 > 0
=> x + 1 = 0
=> x = - 1
Vậy x = - 1
c)
\(\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)
Vậy x = 1 ; x = - 3
d)
\(2x\left(3x-5\right)=10-6x\)
\(\Leftrightarrow2x\left(3x-5\right)+2\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{3}\\x=-\frac{1}{2}\end{array}\right.\)
Vậy x = 5 / 3 ; x = - 1 / 2
\(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=x-3-\) \(\left(x+4\right)\)\(\)
<=> \(4x^2-4x-3x^2+15-x^2=x-3-x-4\)
<=> \(-4x+15=-7\)
<=> \(x=\frac{11}{2}\)
\(\left(2x^2-3x+1\right)\left(x^2-5\right)-\left(x^2-x\right)\left(2x^2-x-10\right)=5\)
<=> \(2x^4-10x^2-3x^3+15x+x^2-5-\left(2x^4-x^3-10x^2-2x^3+x^2+10x\right)=5\)
<=> \(2x^4-10x^2-3x^3+15x+x^2-5-2x^4+x^3+10x^2+2x^3-x^2-10x=5\)
<=> \(5x-5=5\)
<=> \(5x=10\)
<=> \(x=2\)
a )
\(A=x\left(x^3+y\right)-x^2\left(x^2-y\right)-x^2\left(y-1\right)\)
\(\Rightarrow A=x^4+xy-x^4+x^2y-x^2y+x^2\)
\(\Rightarrow A=x^2+xy=x\left(x+y\right)\)
Thay \(x=-10;y=5\)vào A , ta được :
\(A=-10\left(-10+5\right)\)
\(=-10.-5=50\)
Vậy \(A=50\)
a) A = x(x3 + y) - x2(x2 - y) - x2(y - 1)
= x4 + xy - x4 + x2y - x2y + x2
= xy + x2
Thay x = –10 và y = 5 vào (1), ta được:
A = -10.5 + (-10)2 = -50 + 100 = 50
Vậy giá trị của biểu thức A tại x = –10 và y = 5 là 50.
b)Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)
= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)
Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)
⇒x = 3/5
c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)
= (x – 1)2 + (y + 2)2
Vậy (x – 1)2 + (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0
⇒ x = 1 hoặc y = -2