\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

a/ \(\left(x+1\right)\left(x-2\right)< 0\)

TH1:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\) (vô lý)

TH2:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow-1< x< 2\)

Vậy.........

b/ \(\left(x-3\right)\left(x-4\right)>0\)

TH1:\(\left\{{}\begin{matrix}x-3>0\\x-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>3\\x>4\end{matrix}\right.\)\(\Rightarrow x>4\)

TH2:\(\left\{{}\begin{matrix}x-3< 0\\x-4< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 3\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 3\)

Vậy...............

c/ \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{1}{8}\)

\(\Rightarrow\dfrac{-1}{12}< x< -\dfrac{5}{48}\)

Vậy...............

26 tháng 6 2017

Để ( x + 1 ) ( x - 2 ) < 0

=> x + 1 và x - 2 phải khác dấu mà x + 1 > x + 2

=> x + 1 dương x + 2 âm

Tức là x + 1 > 0 => x > - 1 và x - 2 < 0 => x < 2

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

a: 2x(x-1/7)=0

=>x(x-1/7)=0

=>x=0 hoặc x=1/7

b: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)

nên \(x=\dfrac{-1}{4}:\dfrac{7}{20}=\dfrac{-20}{4\cdot7}=\dfrac{-5}{7}\)

c: \(\Leftrightarrow\dfrac{41}{9}:\dfrac{41}{18}-7< x< \left(3.2:3.2+\dfrac{45}{10}\cdot\dfrac{31}{45}\right):\left(-21.5\right)\)

\(\Leftrightarrow2-7< x< \dfrac{\left(1+3.1\right)}{-21.5}\)

\(\Leftrightarrow-5< x< \dfrac{-41}{215}\)

mà x là số nguyên

nên \(x\in\left\{-4;-3;-2;-1\right\}\)

a: \(\left|x\right|=3+\dfrac{1}{5}=\dfrac{16}{5}\)

mà x<0

nên x=-16/5

b: \(\left|x\right|=-2.1\)

nên \(x\in\varnothing\)

c: \(\left|x-3.5\right|=5\)

=>x-3,5=5 hoặc x-3,5=-5

=>x=8,5 hoặc x=-1,5

d: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

=>|x+3/4|=1/2

=>x+3/4=1/2 hoặc x+3/4=-1/2

=>x=-1/4 hoặc x=-5/4

b: 2x-3<0

=>2x<3

hay x<3/2

c: \(\left(2x-4\right)\left(9-3x\right)>0\)

=>(x-2)(x-3)<0

=>2<x<3

d: \(\dfrac{2}{3}x-\dfrac{3}{4}>0\)

=>2/3x>3/4

hay x>9/8

4 tháng 9 2017

1, a/ \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy .............

b/ \(\left|x\right|=3,12\Leftrightarrow\left[{}\begin{matrix}x=3,12\\x=-3,12\end{matrix}\right.\)

Vậy ...........

c/ \(\left|x\right|=0\Leftrightarrow x=0\)

Vậy ..........

d/ \(\left|x\right|=2\dfrac{1}{7}\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\dfrac{1}{7}\\x=-2\dfrac{1}{7}\end{matrix}\right.\)

Vậy ..............

2, a/ \(\left|x\right|=2,1\Leftrightarrow\left[{}\begin{matrix}x=2,1\\x=-2,1\end{matrix}\right.\)

Vậy ...........

b/ \(\left|x\right|=\dfrac{17}{9}\) ; \(x< 0\)

\(\Leftrightarrow x=-\dfrac{17}{9}\)

Vậy ..........

c/ \(\left|x\right|=1\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}x=1\dfrac{2}{5}\\x=-1\dfrac{2}{5}\end{matrix}\right.\)

Vậy ...........

d/ \(\left|x\right|=0,35\) ; \(x>0\Leftrightarrow x=0,35\)

3, a/ \(\left|x-1,7\right|=2,3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-0,6\end{matrix}\right.\)

Vậy ...........

b/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)

\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)

Vậy ...........

4 tháng 9 2017

Đề dễ lắm sao ko tự làm đi

a: x>-3/5 nên x+3/5>0

x<1/7 nên x-1/7<0

A=1/7-x-x-3/5+4/5=-2x+12/35

b: B=|x-1/7|+|x+3/5|-1/3

x>-3/5 nên x+3/5>0

x<1/7 nên x-1/7<0

B=1/7-x+3/5+x-1/3=43/105

22 tháng 7 2017

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(\Rightarrow x;1-2y\in U\left(40\right)\)

\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)

Mà 1-2y lẻ nên:

\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)

b tương tự.

c) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)

d tương tự

26 tháng 6 2017

a, \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{5}\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\)

+,Xét \(\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>-\dfrac{2}{5}\end{matrix}\right.\)

\(\Rightarrow x>\dfrac{1}{3}\)

+, Xét \(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< -\dfrac{2}{5}\end{matrix}\right.\)

\(\Rightarrow x< -\dfrac{2}{5}\)

Vậy...........

b, \(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)

\(x+\dfrac{3}{5}< x+1\) với mọi \(x\in R\)

\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< -\dfrac{3}{5}\\x>-1\end{matrix}\right.\)

Vậy...........

c, \(\dfrac{3}{7}x-\dfrac{2}{5}x=\dfrac{-17}{35}\)

\(\Rightarrow\dfrac{1}{35}x=\dfrac{-17}{35}\)

\(\Rightarrow x=-17\)

d, \(\left(\dfrac{3}{4}x-\dfrac{9}{10}\right)\left(\dfrac{1}{3}+\dfrac{-3}{5}x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{10}=0\\\dfrac{1}{3}+\dfrac{-3}{5}x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{10}\\-\dfrac{3}{5}x=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=\dfrac{5}{9}\end{matrix}\right.\)

Vậy.........

Chúc bạn học tốt!!!

26 tháng 6 2017

a/ \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{5}\right)>0\)

TH1:\(\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>-\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow x>\dfrac{1}{3}\)

TH2:\(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< -\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow x< -\dfrac{2}{5}\)

Vậy \(x>\dfrac{1}{3}\) hoặc \(x< -\dfrac{2}{5}\) thì tm

b/ \(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)

TH1:\(\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -\dfrac{3}{5}\\x>-1\end{matrix}\right.\) \(\Rightarrow-1< x< -\dfrac{3}{5}\)

TH2:\(\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\\x+1< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-\dfrac{3}{5}\\x< -1\end{matrix}\right.\)(vô lý)

Vậy....................

c/ \(\dfrac{3}{7}x-\dfrac{2}{5}x=-\dfrac{17}{35}\)

\(\Rightarrow\left(\dfrac{3}{7}-\dfrac{2}{5}\right)x=-\dfrac{17}{35}\)

\(\Rightarrow\dfrac{1}{35}x=-\dfrac{17}{35}\)

\(\Rightarrow x=-\dfrac{17}{35}:\dfrac{1}{35}=-17\)

Vậy.............

d/ \(\left(\dfrac{3}{4}x-\dfrac{9}{10}\right)\left(\dfrac{1}{3}+\dfrac{-3}{5}x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{10}=0\\\dfrac{1}{3}-\dfrac{3}{5}x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{10}\\\dfrac{3}{5}x=\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=\dfrac{5}{9}\end{matrix}\right.\)

Vậy.....................

19 tháng 11 2022

a: =>1/6x=-49/60

=>x=-49/60:1/6=-49/60*6=-49/10

b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2

=>x=17/15 hoặc x=-13/15

c: =>1,25-4/5x=-5

=>4/5x=1,25+5=6,25

=>x=125/16

d: =>2^x*17=544

=>2^x=32

=>x=5

i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5

=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2

=>x=14,4 hoặc x=9,6

j: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2