Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2-4^2+6x-x^2=0\)
\(16+6x=0\)
\(x=\frac{8}{3}\)
b)x=3
a)\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6.\)
\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)
\(\Leftrightarrow-4x+7=0\)
\(\Leftrightarrow4x=7\Leftrightarrow x=1,75\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10.\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-4x^2+1-10=0\)
\(\Leftrightarrow-24x+27=0\)
\(\Leftrightarrow24x=27\Leftrightarrow x=1,125\)
a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
\(\Leftrightarrow-4x+13=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy \(x=1\).
b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=27\)
\(\Leftrightarrow x=\frac{9}{8}.\)
Mấy pài kia tương tự . :D
a, (x-2)^2 - (x-3)(x+3)=6
x^2-4x+4-(x^2-9)=6
x^2-4x+4-x^2+9=6
(x^2-x^2)-4x+13=6
-4x=-7
x=1,75
b, 4(x-3)^2 - (2x-1)(2x+1)=10
4(x^2-6x+9)-(4x^2-1)=10
4x^2-24x+36-4x^2+1=10
-24x+37=10
x=9/8
c,(x-4)^2 - (x+2)(x-2)=6
x^2-8x+16-(x^2-4)=6
x^2-8x+16-x^2+4=6
-8x+20=6
x=7/4
d, 9(x+1)^2 - (3x-2)(3x+2)=10
9(x^2+2x+1)-(9x^2-4)=10
9x^2+18x+9-9x^2+4=10
18x+13=10
x=-1/6
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(-4x+13=6\)
\(-4x=6-13\)
\(-4x=-7\)
\(x=\frac{-7}{-4}\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(4x^2-24x+36-4x^2+1=10\)
\(-24x+37=10\)
\(x=\frac{9}{8}\)
Vậy \(x=\frac{9}{8}\)
\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(x^2-8x+16-\left(x^2-4\right)=6\)
\(x^2-8x+16-x^2+4=6\)
\(-8x+20=6\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(9x^2+18x+9-9x^2+4=10\)
\(18x+13=10\)
\(x=\frac{-1}{6}\)
Vậy \(x=\frac{-1}{6}\)
\(x^2-3x+2.\left(x-3\right)=0\)
\(x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(x.\left(x-3\right)-3x+9=0\)
\(x.\left(x-3\right)-3.\left(x-3\right)=0\)
\(\left(x-3\right)^2=0=>x=3\)
a,\(x^2-3x+2\left(x-3\right)=0.\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a) (x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2=49
=> x3 - 6x2 + 24x - 8 - x3 + 3x2 - 3x2 + 9x - 9x + 27 + 6x2 + 12x +6 = 49
=> 36x + 25 - 49 = 0 => 36x - 24 = 0 => x = 2/3
b) (x + 2)(x2 - 2x + 4)-x(x2 + 2)=15
=> x3 + 2x2 - 2x2 - 4x + 4x + 8 - x3 - 2x = 15
=> 8 - 2x - 15 = 0 => -2x - 7 = 0 => x = -7/2
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
a) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(4-x^2\right)=1\)
\(\Leftrightarrow x^3-27+4x-x^3=1\)
\(\Leftrightarrow4x-27=1\Leftrightarrow4x=28\Leftrightarrow x=7\)
b) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)+6\left(x-2\right)\left(x+2\right)=60\)
\(\Leftrightarrow x^3-6x^2+12x+4-x^3-8+6\left(x^2-4\right)=60\)
\(\Leftrightarrow-6x^2+12x-4+6x^2-24=60\)
\(\Leftrightarrow12x-28=60\Leftrightarrow x=\frac{22}{3}\)
a) (x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
x^3 + 3x^2 + 9x - 3x^2 - 9x - 27 + 2x^2 - x^3 + 4x - 2x^2 = 1
4x - 27 = 1
4x = 28
x = 7
b) (x - 2)^3 - (x - 2)(x^2 + 2x + 4) + 6(x - 2)(x + 2) = 60
x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 - x(x^2 + 2x + 4) + 2(x^2 + 2x + 4) + 6x - 24 = 60
x^3 + 12x - 32 - x^2 - 2x^2 - 4x + 2x^2 + 4x + 8 = 60
12x - 24 = 60
12x = 60 + 24
12x = 84
x = 7
Trả lời
\(x.\left(x+2\right).\left(x+4\right).\left(x+6\right)=9\)
\(\Leftrightarrow\left[x.\left(x+6\right)\right].\left[\left(x+2\right).\left(x+4\right)\right]=9\)
\(\Leftrightarrow\left(x^2+6x\right).\left(x^2+6x+8\right)=9\)
Đặt \(x^2+6x=t\) ta có
\(t.\left(t+8\right)=9\)
\(\Leftrightarrow t^2+8t-9=0\)
\(\Leftrightarrow t^2-t+9t-9=0\)
\(\Leftrightarrow t.\left(t-1\right)+9.\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right).\left(t+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t+9=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=1\\t=-9\end{cases}}\)
TH1 \(t=1\)
\(\Rightarrow x^2+6x=1\)
\(\Leftrightarrow x^2+6x-1=0\)
\(\Leftrightarrow x^2+6x+9-10=0\)
\(\Leftrightarrow\left(x+3\right)^2=10=\left(\pm\sqrt{10}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=\sqrt{10}\\x+3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3+\sqrt{10}\\x=-3-\sqrt{10}\end{cases}}\)
TH2: \(t=-9\)
\(\Rightarrow x^2+6x=-9\)
\(\Leftrightarrow x^2+6x+9=0\)
\(\Leftrightarrow\left(x+3\right)^2=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(x\in\left\{-3+\sqrt{10};-3-\sqrt{10};-3\right\}\)
\(x\left(x+2\right)\left(x+4\right)\left(x+6\right)=9\)
\(\Leftrightarrow x^4+12x^3+44x^2+48x=9\)
\(\Leftrightarrow x^4+12x^3+44x^2+48x-9=0\)
\(\Leftrightarrow\left(x^3+9x^2+17x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2+6x-1\right)\left(x+3\right)^2=0\)
TH1 : Ta có : \(6^2-4.\left(-1\right)=36+4=40>0\)Suy ra : \(x_1=\frac{-6-\sqrt{40}}{2};x_2=\frac{-6+\sqrt{40}}{2}\)
TH2 : \(\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)