Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\frac{x-2}{5}=\frac{2x-3}{4}\)
\(\Rightarrow\left(x-2\right).4=5.\left(2x-3\right)\)
\(\Rightarrow4x-8=10x-15\)
\(\Rightarrow4x-10x=8-15\)
\(\Rightarrow-6x=-7\)
\(\Rightarrow x=\frac{7}{6}\)
Vậy \(x=\frac{7}{6}\)
Giải :
Ta có : \(\frac{x-2}{5}=\frac{2x-3}{4}\)
\(\Rightarrow\left(x-2\right),4=5,\left(2x-3\right)\)
\(\Rightarrow4x-8=10x-15\)
\(\Rightarrow4x-10x=8-15\)
\(\Rightarrow-6x=-7\)
\(\Rightarrow x=\frac{7}{6}\)
Vậy \(x\) là \(\frac{7}{6}\)
\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{20+xy}{x}=\frac{1}{2}\)
\(\Rightarrow2xy-x=-40\)
\(\Rightarrow x\left(2y-1\right)=40\)
=> x ; 2y - 1 thuộc Ư(40)
Dễ thấy 2y - 1 lẻ
(+) \(\begin{cases}2y-1=1\\x=-40\end{cases}\)\(\Rightarrow\begin{cases}y=1\\x=-40\end{cases}\)
(+) \(\begin{cases}2y-1=-1\\x=40\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x=40\end{cases}\)
(+) \(\begin{cases}2y-1=5\\x=-8\end{cases}\)\(\Rightarrow\begin{cases}y=3\\x=-8\end{cases}\)
(+) \(\begin{cases}2y-1=-5\\x=8\end{cases}\)\(\Rightarrow\begin{cases}y=-2\\x=8\end{cases}\)
Vậy .............
Rút x theo y( hoặc y theo x) xem x như một hàm fx. Dùng chức năng table trong máy tính. Cho y chạy. Chọn giác trị của y làm x nguyên và giá trị x tương ứng
ta có x-y=7 =>x=7+y
theo đề ta có pt
1/3(7+y)=1/4y
=> 7/3+y/3=y/4
=>28+4y=3y
=>4y-3y=-28
=>y=-28
vậy x=7+y=7+(-28)=-21
Câu 1:
Ta có \(\int \frac{dx}{x^4+1}=\frac{1}{2}\int \left ( \frac{x^2+1}{x^4+1}-\frac{x^2-1}{x^4+1} \right )dx=\frac{1}{2}\int \frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}}dx+\frac{1}{2}\int \frac{1-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}dx\)
\(\frac{1}{2}\int \frac{d\left ( x-\frac{1}{x} \right )}{x^2+\frac{1}{x^2}}+\frac{1}{2}\int \frac{d\left ( x+\frac{1}{x} \right )}{x^2+\frac{1}{x^2}}=\frac{1}{2}\int \frac{d(x-\frac{1}{x})}{(x-\frac{1}{x})^2+2}+\frac{1}{2}\int \frac{d(x+\frac{1}{2})}{(x+\frac{1}{x})^2-2}\)
Đặt \(x-\frac{1}{x}=a,x+\frac{1}{x}=b\Rightarrow A=\frac{1}{2}\int \frac{da}{a^2+2}+\frac{1}{2}\int \frac{db}{b^2-2}\)
Bằng cách đặt \(a=\sqrt{2}\tan u (-\frac{\pi}{2}< u<\frac{\pi}{2})\)
\(\Rightarrow \frac{1}{2}\int \frac{da}{a^2+2}=\frac{\sqrt{2}}{4}\tan^{-1}\left (\frac{a}{\sqrt{2}} \right)+c\)
\(\frac{1}{2}\int \frac{db}{b^2-2}=\frac{1}{4\sqrt{2}}\int \left (\frac{1}{b-\sqrt{2}}-\frac{1}{b+\sqrt{2}} \right)db\)\(=\frac{1}{4\sqrt{2}}\ln|\frac{b-\sqrt{2}}{b+\sqrt{2}}|+c\)
\(\Rightarrow A=\frac{1}{2\sqrt{2}}\tan^{-1} \left (\frac{x^2-1}{\sqrt{2}x} \right)-\frac{1}{4\sqrt{2}}\ln|\frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}|+c\)
Awn, chúc mừng năm mới!
Câu 2:
\(B=\int \frac{x^4+1}{x^6+1}=\int\frac{(x^2+1)^2-2x^2}{(x^2+1)(x^4-x^2+1)}dx=\int\frac{x^2+1}{x^4-x^2+1}dx-2\int \frac{x^2dx}{(x^3)^2+1}\)
\(\int\frac{1+\frac{1}{x^2}}{x^2-1+\frac{1}{x^2}}dx-\frac{2}{3}\int\frac{d(x^3)}{(x^3)^2+1}=\int\frac{d\left (x-\frac{1}{x} \right)}{\left (x-\frac{1}{x}\right)^2+1}-\frac{2}{3}\int\frac{d(x^3)}{(x^3)^2+1}\)
Đặt \(x-\frac{1}{x}=a, x^3=b\). Cần tính \(B=\int\frac{da}{a^2+1}-\frac{2}{3}\int\frac{db}{b^2+1}\)
Đến đây bài toán trở về dạng quen thuộc . Đặt \(a=\tan u, b=\tan v\)
\(\Rightarrow B=\tan ^{-1}\left (x-\frac{1}{x}\right)-\frac{2}{3}\tan^{-1}(x^3)+c\)
a) Đặt \(1+\ln x=t\) khi đó \(\frac{dx}{x}=dt\) và do đó
\(I_1=\int\sqrt{t}dt=\frac{2}{3}t^{\frac{3}{2}}+C=\frac{2}{3}\sqrt{\left(1+\ln x\right)^3}+C\)
b) Đặt \(\sqrt[4]{e^x+1}=t\) khi đó \(e^x+1=t^4\Rightarrow e^x=t^4-1\) và \(e^xdx=4t^3dt\) , \(e^{2x}dx=e^x.e^xdx=\left(t^4-1\right)4t^3dt\)
Do đó :
\(I_2=4\int\frac{t^3\left(t^4-1\right)}{t}dt=4\int\left(t^6-t^2\right)dt=4\left[\frac{t^7}{7}-\frac{t^3}{3}\right]+C\)
\(=4\left[\frac{1}{7}\sqrt[4]{\left(e^x+1\right)^7}-\frac{1}{3}\sqrt[4]{\left(e^x+1\right)^3}\right]+C\)
c) Lưu ý rằng \(x^2dx=\frac{1}{3}d\left(x^3+C\right)\) do đó :
\(I_3=\int x^2e^{x^{3+6}dx}=\frac{1}{3}\int e^{x^{3+6}}d\left(x^3+6\right)=\frac{1}{3}e^{x^{3+6}}+C\)
a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)
Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)
Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)
Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)
\(\Leftrightarrow-3< x< x\)
Vậy tập xác định là \(D=\left(-3;2\right)\)