\(\frac{10}{1\times2}+\frac{10}{2\times3}+...+\frac{10}{x\times\left(x+1\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

\(\Leftrightarrow10\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{x\times\left(x+1\right)}\right)=9\)

\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=9\div10\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)

\(\Leftrightarrow\frac{1}{x+1}=1-\frac{9}{10}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{10}\)

\(\Rightarrow x+1=10\)

\(\Leftrightarrow x=9\)

Vậy x = 9 

16 tháng 6 2017

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\right)\cdot x=2009\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\cdot x=2009\)

\(\left(1-\frac{1}{2010}\right)\cdot x=2009\)

\(\frac{2009}{2010}\cdot x=2009\)

\(x=2009:\frac{2009}{2010}\)

\(x=2010\)

16 tháng 6 2017

\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+....+\frac{1}{2009}-\frac{1}{2010}\right).x=2009\)

\(\left(\frac{1}{1}-\frac{1}{2010}\right).x=2009\)

\(\frac{2009}{2010}.x=2009\)

            

\(x=2009:\frac{2009}{2010}\)

\(x=2010\)

16 tháng 8 2015

Ta co:

 \(\left[\left(\frac{29}{25}-x\right).\frac{21}{4}\right]:\left[\left(\frac{95}{9}-\frac{29}{4}\right).\frac{36}{17}\right]=\frac{3}{4}\)

\(\left[\left(\frac{29}{25}-x\right).\frac{21}{4}\right]:\left(\frac{119}{36}.\frac{36}{17}\right)=\frac{3}{4}\)

\(\left[\left(\frac{29}{25}-x\right).\frac{21}{4}\right]:7=\frac{3}{4}\)

\(\left(\frac{29}{25}-x\right).\frac{21}{4}=\frac{3}{4}.7=\frac{21}{4}\)

\(\frac{29}{25}-x=\frac{21}{4}:\frac{21}{4}=1\)

\(x=\frac{29}{25}-1=\frac{4}{25}\)

 

 

( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +1/5.6 ) x 10 - x = 0

= ( 1- 1/2 +1/2 -1/3 +1/3 - 1/4 + 1/4 - 1/5 +1/5 -1/6 ) x 10 - x = 0

= ( 1 - 1/6 ) x 10 - x = 0

= 5/6 x 10 - x =0

=   25/3 - x =0

               x = 25/3 - 0

                x  = 25/3

2 tháng 6 2015

\(\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\right)\times10-x=0\)

\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\times10-x=0\)

\(\left(\frac{1}{1}-\frac{1}{6}\right)\times10-x=0\)

\(\frac{5}{6}\times10-x=0\)

\(\frac{25}{3}-x=0\)

x              =\(\frac{25}{3}-0=\frac{25}{3}\)

\(\frac{12}{35}:\frac{35}{25}=\frac{12}{35}.\frac{25}{35}=\frac{12.25}{35.35}=\frac{12.5.5}{7.5.7.5}=\frac{12}{49}\)

\(\frac{9}{22}.\frac{33}{18}=\frac{9.33}{22.18}=\frac{9.3.11}{11.2.9.2}=\frac{3}{4}\)

1 tháng 7 2017

2/ 

a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)

\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)

\(=1-\frac{1}{21}=\frac{20}{21}\)

b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)

\(=\frac{1}{2017}\)

c) \(A=2000-5-5-5-..-5\)(có 200 số 5) 

\(A=2000-\left(5\cdot200\right)\)

\(A=2000-1000\)

\(A=1000\)

10 tháng 6 2015

           \(x\times\left(\frac{2015}{8\times9}+\frac{1925}{9\times10}+\frac{1795}{10\times11}+\frac{1629}{11\times12}+6\right)=\frac{1}{24}\)

=>    \(x\times\left(\frac{2015}{72}+\frac{1925}{90}+\frac{1795}{110}+\frac{1629}{132}+6\right)=\frac{1}{24}\)

=>   \(x\times84\frac{3}{88}=\frac{1}{24}\Rightarrow x=\frac{1}{24}:\frac{7395}{88}=\frac{1}{24}\times\frac{88}{7395}=\frac{88}{177480}=\frac{11}{22185}\)

12 tháng 6 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{2}{x.\left(x+1\right)}\right)=\frac{1}{2}.\frac{1999}{2001}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\)\(\frac{1999}{4002}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}=\frac{1}{2001}\)

\(\Rightarrow x+1=2001\)

\(\Rightarrow x=2001-1=2000\)

Vậy \(x=2000.\)

12 tháng 6 2018

Chỗ \(x\) phải là \(\frac{2}{x\left(x+1\right)}\) chứ bạn :) 

Ta có : 

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{1999}{2001}\) ( nhân hai vế cho \(\frac{1}{2}\) ) 

\(\Leftrightarrow\)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)

\(\Leftrightarrow\)\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)

\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x-1}=\frac{1999}{4002}\)

\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x-1}=\frac{1999}{4002}\)

\(\Leftrightarrow\)\(\frac{1}{x-1}=\frac{1}{2}-\frac{1999}{4002}\)

\(\Leftrightarrow\)\(\frac{1}{x-1}=\frac{1}{2001}\)

\(\Leftrightarrow\)\(x-1=2001\)

\(\Leftrightarrow\)\(x=2001+1\)

\(\Leftrightarrow\)\(x=2002\)

Vậy \(x=2002\)

Chúc bạn học tốt ~