Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x+1\right|+\left|x+8\right|=4x\) (*)
+)Xét \(x\ge-8\Rightarrow\)\(\begin{cases}2x+1\ge0\Rightarrow\left|2x+1\right|=2x+1\\x+8\ge0\Rightarrow\left|x+8\right|=x+8\end{cases}\) thì (*) thành:
\(2x+1+x+8=4x\)
\(\Rightarrow3x+9=4x\)
\(\Rightarrow x=9\) (thỏa mãn)
+)Xét \(-\frac{1}{2}\le x< -8\)\(\Rightarrow\begin{cases}x\ge-\frac{1}{2}\Rightarrow2x+1\ge0\Rightarrow\left|2x+1\right|=2x+1\\x< -8\Rightarrow x+8< 0\Rightarrow\left|x+8\right|=-\left(x+8\right)=-x-8\end{cases}\) thì (*)
thành: \(2x+1+\left(-x-8\right)=4x\)
\(\Leftrightarrow x-7=4x\)
\(\Leftrightarrow-3x=7\)
\(\Leftrightarrow x=-\frac{7}{3}\)( không thỏa mãn)
+)Xét \(x< -\frac{1}{2}\Rightarrow\)\(\begin{cases}2x+1< 0\Rightarrow\left|2x+1\right|=-\left(2x+1\right)=-2x-1\\x+8< 0\Rightarrow\left|x+8\right|=-\left(x+8\right)=-x-8\end{cases}\) thì (*) thành:
\(\left(-2x-1\right)+\left(-x-8\right)=4x\)
\(\Leftrightarrow-3x-9=4x\)
\(\Leftrightarrow-7x=9\)
\(\Leftrightarrow x=-\frac{9}{7}\) (không thỏa mãn)
1/
a/ \(\left|2x-1\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x\\2x-1=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-2x=1\left(loại\right)\\2x+2x=1\end{matrix}\right.\)
\(\Leftrightarrow4x=1\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
Vậy ......
b/ \(\left|x-3\right|-\left|4-x\right|=0\)
\(\Leftrightarrow\left|x-3\right|=\left|4-x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\\x-3=-4+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+x=4+3\\x-x=-4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\0x=-1\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
Vậy ....
a)Ta có :\(\left|x+6\right|+\left|4-x\right|\ge\left|x+6+4-x\right|=\left|10\right|=10\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+6\right)\left(4-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+6\ge0\\4-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+6\le0\\4-x\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-6\\x\le4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le-6\\x\ge4\end{cases}}\)(Vô lí)
\(\Leftrightarrow-6\le x\le4\)
Vậy \(-6\le x\le4\)
b)Ta có :\(\left|x-1\right|+\left|x-4\right|=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=\left|3\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(x-4\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-4\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\x-4\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le1\\x\le4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}\)
\(\left(2x-1\right)^7-\left(2x-1\right)^5=0\Leftrightarrow\left(2x-1\right)^5\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^5\left(2x-1-1\right)\left(2x-1+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^5\left(2x-2\right)2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^5=0\\2x-2=0\\2x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\\x=0\end{matrix}\right.\)
\(\left(2x-1\right)^7-\left(2x-1\right)^5=0\)
\(\Leftrightarrow\left(2x-1\right)^5\left(\left(2x-1\right)^2-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^5\left(4x^2-4x+1-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^5\left(4x^2-4x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^54x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x-1=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\\x=0\end{matrix}\right.\)