Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) và \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
VT = \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)
= \(\frac{2x-4}{2014}+1+\frac{2x-2}{2016}+1\)
= \(\frac{2x-2018}{2014}+\frac{2x-2018}{2016}\)
VP = \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
= \(\frac{2x-1}{2017}+1+\frac{2x-3}{2015}+1\)
= \(\frac{2x-2018}{2017}+\frac{2x-2018}{2015}\)
Mà \(\frac{2x-2018}{2014}>\frac{2x-2018}{2015}\) và \(\frac{2x-2018}{2016}>\frac{2x-2018}{2017}\)
nên \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) > \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
Chúc bn học tốt!!
Sửa đề:
\((2x^2+x-2015)^2+4(x^2-5x-2016)^2=4(2x^2+x-2015)(x^2-5x-2016)\)
\(\Rightarrow\left(2x^2+x-2015\right)^2-2.\left(2x^2+x-2015\right).2.\left(x^2-5x-2016\right)+[2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow[2x^2+x-2015-2.\left(x^2-5x-2016\right)]^2=0\)
\(\Rightarrow11x+2017=0\)
\(\Rightarrow x=\frac{-2017}{11}\)
\(\Leftrightarrow\left(2x^2+x-2017\right)^2-4\left(2x^2+x-2017\right)\left(x^2-5x-2016\right)+4\left(x^2-5x-2016\right)^2=0\)
\(\Leftrightarrow\left(2x^2+x-2017-2\left(x^2-5x-2016\right)\right)^2=0\)
\(\Leftrightarrow11x-6049=0\)
\(\Rightarrow x=\frac{6049}{11}\)
\(\dfrac{2x+4}{2015}-\dfrac{2x+4}{2016}=\dfrac{2x+4}{2017}-\dfrac{2x+4}{2018}\)
\(\Rightarrow\left(2x+4\right)\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)=\left(2x+4\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
Vì \(\dfrac{1}{2015}-\dfrac{1}{2016}\ne\dfrac{1}{2016}-\dfrac{1}{2017}\) nên 2x + 4 = 0
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
Vậy, x = -2
\(\dfrac{2x+4}{2015}-\dfrac{2x+4}{2016}=\dfrac{2x+4}{2017}-\dfrac{2x+4}{2018}\)
\(\Rightarrow\left(2x+4\right)\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)=\left(2x+4\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
Vì \(\dfrac{1}{2015}-\dfrac{1}{2016}\ne\dfrac{1}{2016}-\dfrac{1}{2017}\) nên \(2x+4=0\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
Vậy, x = -2