\(\left|-x\right|\) = 1,5
b) \(\left|x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

a/ \(\left|-x\right|=1,5\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1,5\\x=-1,5\end{matrix}\right.\)

Vậy .....

b/ \(\left|x+\dfrac{1}{2}\right|=2\dfrac{1}{2}\)

\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{5}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{5}{2}\\x+\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy ....

c/ \(\left|0,5-x\right|=\left|-0,5\right|\)

\(\left|0,5-x\right|=0,5\)

\(\Leftrightarrow\left[{}\begin{matrix}0,5-x=0,5\\0,5-x=-0,5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy ...

11 tháng 9 2017

Cảm ơn bn nha.haha

11 tháng 9 2017

a/ \(\left|-1,3\right|-\left|-3,7\right|+\left|-\dfrac{1}{2}\right|\)

\(=1,3-3,7+\dfrac{1}{2}\)

\(=-2,4+\dfrac{1}{2}\)

\(=-2,9\)

b/ \(\left|\dfrac{2}{5}\right|-\left|-0,2\right|.\left|-7\right|\)

\(=\dfrac{2}{5}-0,2.7\)

\(=\dfrac{2}{5}.1,4\)

\(=0,56\)

c/ \(-15:\left|-3\right|+\left|0,5\right|\)

\(=-15:2+0,5\)

\(=-7,5+0,5\)

\(=-8\)

11 tháng 9 2017

Cảm ơn bn nha.haha

28 tháng 9 2017

a/ \(\left|3x-1\right|=\left|5-2x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5-2x\\3x-1=-5+2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2x=5+1\\3x-2x=-5+1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5x=6\\x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-4\end{matrix}\right.\)

Vậy ......

b/ \(\left|x+2\right|-\left|x+7\right|=0\)

\(\Leftrightarrow\left|x+2\right|=\left|x+7\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=x+7\\x+2=-x-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-x=7-2\\x+x=-7-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\2x=-9\end{matrix}\right.\)

\(\Leftrightarrow x=-\dfrac{9}{2}\)

Vậy ...............

c/ \(\left|2x-1\right|+x=2\)

\(\Leftrightarrow\left|2x-1\right|=2-x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2-x\\2x-1=-2+x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+x=2+1\\2x-x=-2-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=3\\x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy ..

11 tháng 9 2017

a/ \(x+\dfrac{3}{5}=\dfrac{4}{7}\)

\(x=\dfrac{4}{7}-\dfrac{3}{5}\)

\(x=-\dfrac{1}{35}\)

Vậy ....

b/ \(x-\dfrac{5}{6}=\dfrac{1}{6}\)

\(x=\dfrac{1}{6}+\dfrac{5}{6}\)

\(x=1\)

Vậy ....

c/\(-\dfrac{5}{7}-x=\dfrac{-9}{10}\)

\(x=\dfrac{-5}{7}-\dfrac{-9}{10}\)

\(x=\dfrac{13}{70}\)

Vậy .....

d/ \(\dfrac{5}{7}-x=10\)

\(x=\dfrac{5}{7}-10\)

\(x=\dfrac{-65}{7}\)

Vậy ...

11 tháng 9 2017

e/ \(x:\left(\dfrac{1}{9}-\dfrac{2}{5}\right)=\dfrac{-1}{2}\)

\(x:\dfrac{-13}{45}=\dfrac{-1}{2}\)

\(x=\dfrac{-1}{2}.\dfrac{-13}{45}\)

\(x=\dfrac{13}{90}\)

Vậy ....

f/ \(\left(\dfrac{-3}{5}+1,25\right)x=\dfrac{1}{3}\)

\(0,65.x=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}:0,65\)

\(x=\dfrac{20}{39}\)

Vậy ....

g/ \(\dfrac{1}{3}x+\left(\dfrac{2}{3}-\dfrac{4}{9}\right)=\dfrac{-3}{4}\)

\(\dfrac{1}{3}x+\dfrac{2}{9}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}x=\dfrac{-35}{36}\)

\(\Leftrightarrow x=\dfrac{-35}{12}\)

Vậy ...

29 tháng 10 2017

a)hình như đề sai thì phải

sửa lại

\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)

=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)

=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)

5 tháng 11 2017

Ta có:

\(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)

\(\Rightarrow\dfrac{7a-11b}{7c-11d}=\dfrac{4a+5b}{4c+5d}\)

\(\Leftrightarrow\dfrac{7a}{7c}=\dfrac{11b}{11d}=\dfrac{4a}{4c}=\dfrac{5b}{5d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Mặt khác:

\(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

5 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)= k

\(\dfrac{a}{b}=k\) = > a = bk

\(\dfrac{c}{d}=k\) = > c = dk

Ta có: \(\dfrac{7a-11b}{4a+5b}=\dfrac{7.bk-11b}{4.bk+5b}=\dfrac{\left(7.11\right).b.\left(k-1\right)}{\left(4.5\right).b.\left(k+1\right)}\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\)(1)

\(\dfrac{7c-11d}{4c+5d}=\dfrac{7.dk-11d}{4.dk+5d}=\dfrac{\left(7.11\right).d.\left(k-1\right)}{\left(4.5\right).d.\left(k+1\right)}=\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\left(2\right)\)Từ (1) và (2) = > \(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)

15 tháng 10 2017

a) 3.x-14 =81

3.x = 81+1

3.x = 82

x = 82:3

x=82/3

Vậy x = 82/3

15 tháng 10 2017

b) (x+1)5= -32

(x+1)5= (-2)5

x+1 = -2

x = -2-1

x = -3

Vậy x = -3