K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

`3-16x^2=0`

`<=>(\sqrt3)^2-(4x)^2=0`

`<=>(\sqrt3+4x)(\sqrt3-4x)=0`

`<=> [(\sqrt3=-4x),(\sqrt3=4x):}`

`<=> [(x=-\sqrt3/4),(x=\sqrt3/4):}`

Vậy `S={\pm \sqrt3/4}`.

Ta có: \(3-16x^2=0\)

\(\Leftrightarrow16x^2=3\)

\(\Leftrightarrow x^2=\dfrac{3}{16}\)

hay \(x\in\left\{\dfrac{\sqrt{3}}{4};-\dfrac{\sqrt{3}}{4}\right\}\)

\(16x^3-12x^2+3x-7=0\)

\(\Leftrightarrow16x^3-16x^2-3x^2+3x+7x^2-7=0\)

\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+7\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\left(7x+7\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(16x^2-3x+7x+7\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(16x^2+4x+7\right)=0\)

<=> x - 1 = 0 

<=> x = 1

12 tháng 9 2018

\(\Leftrightarrow16x^3-16x^2+4x^2-4x+7x-7=0\)

\(\Leftrightarrow16x^2.\left(x-1\right)+4x.\left(x-1\right)+7.\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right).\left(16x^2+4x+7\right)=0\)

Ta có \(16x^2+4x+7=\left(4x\right)^2+2.4x.\frac{1}{2}+\frac{1}{4}+\frac{27}{4}\)

\(=\left(4x+\frac{1}{2}\right)^2+\frac{27}{4}>0\)

nên \(\left(x-1\right).\left(16x^2+4x+7\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Rightarrow x=1\)

30 tháng 10 2016

= 16x-16x+ 4x2 - 4x + 7x - 7

= 16x2(x-1)+4x(x-1)+7(x-1)

=(x-1)(16x2+4x+7)

30 tháng 8 2020

a) Ta có: \(x^3-3x^2-16x+48=0\)

\(\Leftrightarrow x^2\left(x-3\right)-16\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm4\end{cases}}\)

b) Ta có: \(10x^2-33x-7=0\)

\(\Leftrightarrow\left(10x^2-35x\right)+\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\5x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{5}\end{cases}}\)

30 tháng 8 2020

x3 - 3x2 - 16x + 48 = 0

<=> ( x3 - 3x2 ) - ( 16x - 48 ) = 0

<=> x2( x - 3 ) - 16( x - 3 ) = 0

<=> ( x - 3 )( x2 - 16 ) = 0

<=> ( x - 3 )( x - 4 )( x + 4 ) = 0

<=> x = 3 hoặc x = 4 hoặc x = -4

10x2 - 33x - 7 = 0

<=> 10x2 + 2x - 35x - 7 = 0

<=> ( 10x2 + 2x ) - ( 35x + 7 ) = 0

<=> 2x( 5x + 1 ) - 7( 5x + 1 ) = 0

<=> ( 5x + 1 )( 2x - 7 ) = 0

<=> \(\orbr{\begin{cases}5x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=\frac{7}{2}\end{cases}}\)

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

21 tháng 10 2018

     \(5x^2+2y^2-6xy+16x-8y+16=0\)

\(\Rightarrow10x^2+4y^2-12xy+32x-16y+32=0\)

\(\Rightarrow\left(9x^2-12xy+4y^2\right)+\left(24x-16y\right)+16+\left(x^2+8x+16\right)=0\)

\(\Rightarrow\left(3x-2y\right)^2+2.\left(3x-2y\right).4+4^2+\left(x+4\right)^2=0\)

\(\Rightarrow\left(3x-2y+4\right)^2+\left(x+4\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x-2y+4=0\\x+4=0\end{cases}\Rightarrow}\hept{\begin{cases}-12-2y+4=0\\x=-4\end{cases}\Rightarrow\hept{\begin{cases}y=-4\\x=-4\end{cases}}}\)

Vậy \(x=y=-4\)

23 tháng 7 2018

a) \(x^3-16x=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

b) \(\left(x-1\right)\left(x+2\right)-x-2=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

c) \(2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

tik thanghoa

27 tháng 8 2018

trả lời giúp mình 

27 tháng 8 2018

\(16x^3-16x^4+4x-8x^2-1=0\)

<=>  \(-16x^4-4x^2+16x^3+4x-4x^2-1=0\)

<=>  \(-4x^2\left(4x+1\right)+4x\left(4x^2+1\right)-\left(4x^2+1\right)=0\)

<=>  \(-\left(4x^2+1\right)\left(4x^2-4x+1\right)=0\)

<=>  \(-\left(4x^2+1\right)\left(2x-1\right)^2=0\)

<=>   \(2x-1=0\) (do  4x2 + 1 > 0 )

<=>  \(x=\frac{1}{2}\)

8 tháng 8 2016

d) <=>x2-5x-x+5=0

<=>x(x-5)-(x-5)=0

<=>(x-5)(x-1)=0

<=>x=5 hoặc x=1

9 tháng 8 2016

thank nha