Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik
Bạn tham khảo:
3a−b+2ab−10
⇒2ab−b+3a=10
⇒b(2a−1)+3a=10
⇒2b(2a−1)+6a=10.2
⇒2b(2a−1)+6a−3=20−3
⇒2b(2a−1)+3(2a−1)=17
⇒(2a−1)(2b+3)=17
⇒2a−1∈Ư(17)=⇒2a−1∈Ư(17)= { ±1;±17±1;±17 }
.) Nếu 2a−1=12a−1=1 thì 2b+3=172b+3=17
⇒a=1;b=7
.) Nếu 2a−1=−12a−1=−1 thì 2b+3=−172b+3=−17
⇒a=0;b=−10
.) Nếu 2a−1=172a−1=17 thì 2b+3=12b+3=1
⇒a=9;b=−1
.) Nếu 2a−1=−172a−1=−17 thì 2b+3=−12b+3=−1
⇒a=−8;b=−2
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
\(\left(3^a-1\right)\left(3^a-2\right)\left(3^a-3\right)\left(3^a-4\right)=\left(2018^b+358799\right)\)
Với \(a=0\)dễ thấy không thỏa.
Với \(a>0\)có VT là tích của bốn số tự nhiên liên tiếp nên chia hết cho \(4\).
VP nếu \(b>0\)thì VP là số lẻ nên không chia hết cho \(4\)nên \(b=0\).
Suy ra \(\left(3^a-1\right)\left(3^a-2\right)\left(3^a-3\right)\left(3^a-4\right)=358800\)
Có \(358800=23.24.25.26\)suy ra \(3^a-1=26\Leftrightarrow a=3\).
Vậy phương trình có nghiệm nguyên duy nhất là \(\left(a,b\right)=\left(3,0\right)\).