\(\frac{3x-1}{2x-2}\):
  A. D= 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

Mọi người giải thích chi tiết cho em với ạ.Em cảm ơn

18 tháng 10 2019

y xác định khi :

X3 - 1 \(\ne\)0

=> X \(\ne\)1.

Vậy TXD : D =R\ {1} hay D = (-\(\infty\);1) \(\cup\)( 1 ; + \(\infty\))

20 tháng 9 2017

Akai và Ace giúp dùm mình đi

7 tháng 11 2019

a/ ĐKXĐ: \(x\ne-1\)

Giả sử x1> x2

\(\Rightarrow f\left(x_1\right)=\frac{x_1}{x_1+1};f\left(x_2\right)=\frac{x_2}{x_2+1}\)

\(f\left(x_1\right)-f\left(x_2\right)=\frac{x_1}{x_1+1}-\frac{x_2}{x_2+1}\)

\(=\frac{x_1x_2+x_1-x_1x_2-x_2}{\left(x_1+1\right)\left(x_2+2\right)}=\frac{x_1-x_2}{\left(x_1+1\right)\left(x_2+1\right)}\)

Xét trên khoảng \(\left(-\infty;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+1>0\\x_2+1>0\end{matrix}\right.\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(x_1>x_2\Rightarrow x_1-x_2>0\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)

=> hàm số đồng biến trên \(\left(-\infty;1\right)\)

làm tương tự trên khoảng \(\left(-1;+\infty\right)\)

b/ \(ĐKXĐ:x\ne2\)

Giả sử x1> x2

\(f\left(x_1\right)-f\left(x_2\right)=\frac{2x_1+3}{2-x_1}-\frac{2x_2+3}{2-x_2}\)

\(=\frac{4x_1-2x_1x_2+6-3x_2-4x_2+2x_1x_2-6+3x_1}{\left(2-x_1\right)\left(2-x_2\right)}\)

\(=\frac{7x_1-7x_2}{\left(2-x_1\right)\left(2-x_2\right)}\)

Xét trên khoảng \(\left(-\infty;2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2-x_1>0\\2-x_2>0\end{matrix}\right.\Rightarrow\left(2-x_1\right)\left(2-x_2\right)>0\)

\(x_1>x_2\Rightarrow7x_1-7x_2>0\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)

=> hàm số đồng biến trên \(\left(-\infty;2\right)\)

làm tương tự trên \(\left(2;+\infty\right)\)

c/ Có \(-\frac{b}{2a}=-1\)

Mà a=1>0 => hàm số đồng biến trên \(\left(-1;+\infty\right)\) , nghịch biến trên \(\left(-\infty;-1\right)\)

d/ \(-\frac{b}{2a}=1\)

Mà a= -1>0 => hàm số đồng biến trên \(\left(-\infty;1\right)\) , nghịch biến trên \(\left(1;+\infty\right)\)

NV
15 tháng 5 2020

ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)

\(\Leftrightarrow4x-3>0\)

\(\Rightarrow x>\frac{3}{4}\)

\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)

Chẳng đáp án nào đúng cả :)

18 tháng 9 2020

kệ mày

19 tháng 9 2020

tôi ko trả lời được vì tôi lớp 6 thôi

10 tháng 3 2022

d