Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a, \(\left|-5\right|=5\)
b, \(\left|10\right|=10\)
c, \(\left|-5\right|-\left|10\right|=5-10=-5\)
d, -15.30= -450
Câu 2:
a, Ta có: \(\dfrac{10}{21}.\dfrac{14}{25}=\dfrac{10.14}{21.25}=\dfrac{5.2.7.2}{3.7.5.5}=\dfrac{2.2}{3.5}=\dfrac{4}{15}\)
c, Ta có: \(-\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{-5.2+3.3}{12}=\dfrac{-10+9}{12}=\dfrac{-1}{12}\)
d, \(\dfrac{11}{17}.\dfrac{3}{2017}+\dfrac{11}{17}.\dfrac{2014}{2017}-1\dfrac{11}{17}=\dfrac{11}{17}\left(\dfrac{3}{2017}+\dfrac{2014}{2017}\right)-1\dfrac{11}{17}\)
\(=\dfrac{11}{17}.\dfrac{2017}{2017}-1\dfrac{11}{17}=\dfrac{11}{17}-1-\dfrac{11}{17}=-1\)
Câu 7: a, Để A có nghĩa khi \(x+2\ne0\) \(\Leftrightarrow x=-2\)
b, Ta có: \(A=2\)
<=> \(\dfrac{x-1}{x+2}=2\)
<=> \(\dfrac{x-1}{x+2}-2=0\)
<=> \(\dfrac{x-1}{x+2}-\dfrac{2x+4}{x+2}=0\)
<=> \(\dfrac{x-1-2x-4}{x+2}=0\)
<=> \(\dfrac{-x-5}{x+2}=0\)
<=> -x-5=0
<=> -x=5
<=> x= -5
1a.Vì \(\left|x\right|\) là 1 số tự nhiên nên \(\left|x\right|+2017\ge2017\)(1)
Mà ta đã biết:\(\dfrac{a}{b}\ge\dfrac{a}{b+n}\)với n là một số tự nhiên.
Nên từ (1)suy ra\(\dfrac{2016}{\left|x\right|+2017}\le\dfrac{2016}{2017}\)
Vậy để \(\dfrac{2016}{\left|x\right|+2017}\)lớn nhất thì \(\dfrac{2016}{\left|x\right|+2017}=\dfrac{2016}{2017}\)
1b.Ta thấy:
\(\dfrac{\left|x\right|+2016}{-2017}=\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)
Để \(\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)lớn nhất thì \(-\left(\left|x\right|+2016\right)\)lớn nhất
Mà theo câu a,ta có:\(\left|x\right|\)+2016 là một số tự nhiên nên \(-\left(\left|x\right|+2016\right)\)mang dấu âm hay \(-\left(\left|x\right|+2016\right)\le0\)( chú ý \(-0=0\))
Vậy để \(-\left(\left|x\right|+2016\right)\)lớn nhất hay \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì \(\left|x\right|+2016=0\)
\(\Rightarrow\)Để \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì nó bằng \(\dfrac{0}{-2017}\)hay nó bằng 0
2)
a)Để \(\dfrac{\left|x\right|+1945}{1975}\)nhỏ nhất thì \(\left|x\right|+1945\) nhỏ nhất
Vì \(\left|x\right|\ge0\) nên \(\left|x\right|+1945\ge1945\)
\(\Rightarrow\)Để \(\left|x\right|+1945\) nhỏ nhất thì \(\left|x\right|+1945\) = 1945
\(\Rightarrow\)Để \(\dfrac{\left|x\right|+1945}{1975}\)bé nhất thì nó phải bằng \(\dfrac{1945}{1975}\)hay\(\dfrac{389}{395}\)
b)Để \(\dfrac{-1}{\left|x\right|+1}\)thì \(\left|x\right|+1\)bé nhất
Vì \(\left|x\right|\ge0\) nên \(\left|x\right|+1\ge1\)
\(\Rightarrow\)Để \(\left|x\right|+1\)bé nhất thì \(\left|x\right|+1\)\(=1\)
\(\Rightarrow\)GTNN của \(\dfrac{-1}{\left|x\right|+1}\)là \(\dfrac{-1}{1}\) hay -1
Bài 2:
a: \(=44\cdot82-400+18\cdot44\)
\(=44\cdot100-400=4400-400=4000\)
b: \(=6^2:\left\{780:\left[390-125\cdot49+65\right]\right\}\)
\(=36:\left\{780:\left[-5670\right]\right\}\)
\(=36:\dfrac{-26}{189}=\dfrac{-3402}{13}\)
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right)\left(1-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}=\dfrac{1}{2017}\)
Giải:
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right).\left(1-\dfrac{1}{2017}\right)\)
\(\Leftrightarrow A=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}\)
\(\Leftrightarrow A=\dfrac{1.2...201.2016}{2.3...2016.2017}\)
\(\Leftrightarrow A=\dfrac{1.2.3...2015.2016}{2017.2.3...2015.2016.}\)
Rút gọ cả tử và mẫu với 2.3...2015.2016, ta được:
\(A=\dfrac{1}{2017}\)
Vậy \(A=\dfrac{1}{2017}\).
Chúc bạn học tốt!
\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2017}-1\right)\\ =\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{-3}{4}\cdot...\cdot\dfrac{-2016}{2017}\\ =\dfrac{\left(-1\right)\cdot\left(-2\right)\cdot\left(-3\right)\cdot...\cdot\left(-2016\right)}{2\cdot3\cdot4\cdot...\cdot2017}\\=\dfrac{\left(-1\right)\cdot\left(-1\right)\cdot\left(-1\right)\cdot...\left(-1\right)}{2017}\left(\text{có 2016 thừa số -1}\right)\\ =\dfrac{1}{2017}\)
Gọi biểu thức trên là A. Ta có
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{2017}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}....\dfrac{2016}{2017}=\dfrac{1.2.3...2016}{2.3.4..2017}=\dfrac{1}{2017}\)
K chép lại đề, lm luôn nhé:
*\(\Rightarrow\) \(\left(\dfrac{7}{2}+2x\right)\cdot\dfrac{8}{3}=\dfrac{16}{3}\)
\(\Rightarrow\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(\Rightarrow2x=2-\dfrac{7}{2}=-\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{3}{4}\)
* \(\Rightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{\dfrac{3}{4}-2}{2}=-\dfrac{5}{8}\)
=> K có gt x nào t/m đề
* Đề sai
* \(\Rightarrow\left[{}\begin{matrix}3x-1=0\\-\dfrac{1}{2}x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=10\end{matrix}\right.\)
*\(\Rightarrow\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=-\dfrac{21}{4}\)
\(\Rightarrow2x-1=\dfrac{1}{3}:\left(-\dfrac{21}{4}\right)=-\dfrac{4}{63}\)
\(\Rightarrow2x=-\dfrac{4}{63}+1=\dfrac{59}{63}\)
\(\Rightarrow x=\dfrac{59}{63}:2=\dfrac{59}{126}\)
* \(\Rightarrow\left(2x+\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{3}{5}=\dfrac{3}{5}\\2x+\dfrac{3}{5}=-\dfrac{3}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=0\Rightarrow x=0\\2x=-\dfrac{6}{5}\Rightarrow x=-\dfrac{3}{5}\end{matrix}\right.\)
* \(\Rightarrow-5x-1-\dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Rightarrow-5x-\dfrac{1}{2}x-\dfrac{3}{2}x=-\dfrac{5}{6}+1-\dfrac{1}{3}\)
\(\Rightarrow-7x=-\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{1}{6}:7=-\dfrac{1}{42}\)
a)\(\left(3\dfrac{1}{2}+2x\right).2\dfrac{2}{3}=5\dfrac{1}{3}\)
\(\left(\dfrac{7}{2}+2x\right).\dfrac{8}{3}=\dfrac{16}{3}\)
\(\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(2x=2-\dfrac{7}{2}=\dfrac{-3}{2}\Rightarrow x=\dfrac{-3}{4}\)
b)\(\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(2.\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2=\dfrac{-1}{4}\)
\(\Rightarrow\left|2x-3\right|=\dfrac{-1}{8}\)
\(\Rightarrow x\in\varnothing\)
c) Đề sai,bạn có viết chữ x đâu,đó là phép tính mà.
d)\(\left(3x-1\right)\left(\dfrac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-1}{2}x+5=0\Rightarrow x=10\)
e)\(\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=\dfrac{-21}{4}\)
\(2x-1=\dfrac{1}{3}:\dfrac{-21}{4}=\dfrac{-4}{63}\)
\(\Rightarrow2x=\dfrac{59}{63}\Rightarrow x=\dfrac{59}{126}\)
g)\(\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(\left(2x+\dfrac{3}{5}\right)^2=0+\dfrac{9}{25}=\dfrac{9}{25}\)
\(\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2=\left(\dfrac{-3}{5}\right)^2\)
\(th1:x=0\)
\(th2:x=\dfrac{-3}{5}\)
h)\(-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(-5x+-1-\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Leftrightarrow-5x+-1+\dfrac{5}{6}-\dfrac{1}{3}=2x\)
\(-5x+\dfrac{-1}{2}=2x\)
\(\dfrac{-1}{2}=2x+5x\)
\(\dfrac{-1}{2}=7x\Rightarrow x=\dfrac{-1}{14}\)
\(\Leftrightarrow1-11< =3m< =\left(9-9\right)\cdot A=0\)
=>-10<=3m<=0
hay \(m\in\left\{-3;-2;-1;0\right\}\)