\(\dfrac{2sinx+cosx}{sinx+2cosx+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

\(\Leftrightarrow y\left(sinx+2cosx+4\right)=2sinx+cosx\)

\(\Leftrightarrow sinx\left(y-2\right)+cosx\left(2y-1\right)+4=0\) 

26 tháng 9 2021

undefined

đang làm thì lỡ tay ấn nhầm :))

1 tháng 8 2018

1. Do \(\cos x+2>0\forall x\in R\) \(\Rightarrow\) Hàm số xác định \(\forall x\in R\)

\(y=\dfrac{\sin x+1}{\cos x+2}\)

\(\Leftrightarrow\)\(y\cos x-\sin x=1-2y\)

pt có nghiệm \(\Leftrightarrow y^2+\left(-1\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow3y^2-4y\le0\)

\(\Leftrightarrow0\le y\le\dfrac{4}{3}\)

2. \(y=\dfrac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)

\(\Leftrightarrow\left(2y-1\right)\cos x-\left(y+2\right)\sin x=3-4y\)

pt có nghiệm \(\Leftrightarrow\left(2y-1\right)^2+\left(y+2\right)^2\ge\left(3-4y\right)^2\)

\(\Leftrightarrow11y^2-24y+4\le0\)

\(\Leftrightarrow\dfrac{2}{11}\le y\le2\)

kiểm tra giúp mình xem có sai sót gì không...

2 tháng 8 2018

bạn ơi tsao chỗ pt có nghiệm chỗ câu 1 lại ra bất pt vậy

14 tháng 8 2017

\(\dfrac{2sinx+cosx+1}{sinx-2cosx+3}=\dfrac{1}{2}\)

\(\Leftrightarrow4sinx+2cosx+2=sinx-2cosx+3\)

\(\Leftrightarrow3sinx+4cosx=1\)

\(\Leftrightarrow\dfrac{3}{5}sinx+\dfrac{4}{5}cosx=\dfrac{1}{5}\)

Đặt \(\left\{{}\begin{matrix}\dfrac{3}{5}=sin\varphi\\\dfrac{4}{5}=cos\varphi\end{matrix}\right.\)

\(pt\Leftrightarrow sin\varphi\cdot sinx+cos\varphi\cdot cos=\dfrac{1}{5}\)

\(\Leftrightarrow cos\cdot\left(\varphi-x\right)=\dfrac{1}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}\varphi-x=arc\cdot cos\dfrac{1}{5}+k2\pi\\\varphi-x=-arc\cdot cos\dfrac{1}{5}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\varphi+arc\cdot cos\dfrac{1}{5}+k2\pi\\x=\varphi-arc\cdot cos\dfrac{1}{5}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

19 tháng 9 2017

hộ vs ae ơi

20 tháng 8 2018

a.\(\dfrac{sin2x+cosx-\sqrt{3}\left(cos2x+sinx\right)}{2sin2x-\sqrt{3}}=1\left(1\right)\)

ĐKXĐ: sin2x≠\(\dfrac{\sqrt{3}}{2}\)

(1) ⇔ sin2x + cosx - \(\sqrt{3}\) ( cos2x + sinx) = 2sin2x - \(\sqrt{3}\)

⇔cosx - \(\sqrt{3}\) sinx = \(\sqrt{3}\) cos2x + sin2x +\(\sqrt{3}\)

\(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=sin\left(2x+\dfrac{\Pi}{3}\right)-sin\dfrac{\Pi}{3}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2cos\left(x+\dfrac{\Pi}{3}\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2sin\left(\dfrac{\Pi}{6}-x\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)\left(2sinx-1\right)=0\)

Đến đây tự giải tiếp nha nhớ đối chiếu đk.

20 tháng 8 2018

b.\(\left(2cosx-1\right)cotx=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\left(1\right)\)

ĐKXĐ: sinx≠0 và cosx≠1

(1)⇔\(\left(2cosx-1\right)\dfrac{cosx}{sinx}=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\)

⇔cosx(2cosx-1)(cosx-1) = 3(cosx-1) + 2sin2x

⇔2cos3x - cos2x - 2cosx +1 = 0

⇔ (cosx-1)(cosx+1)(2cosx-1)=0

NV
30 tháng 6 2021

a.

\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge max\left(cosx\right)\)

\(\Leftrightarrow m\ge1\)

b.

\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)

\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)

\(\Leftrightarrow m\le-2\)

c.

\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)

\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

NV
27 tháng 8 2020

c/

\(\Leftrightarrow2cos4x.sin3x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\2sin3x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\3x=\frac{\pi}{6}+k2\pi\\3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

d/

\(\Leftrightarrow6sinx+3cosx+3=sinx-2cosx+3\)

\(\Leftrightarrow sinx+cosx=0\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

NV
27 tháng 8 2020

a/

\(\Leftrightarrow\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx=sin4x\)

\(\Leftrightarrow sin\left(\frac{\pi}{3}-x\right)=sin4x\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-x+k2\pi\\4x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

b/

\(\Leftrightarrow2sinx.cosx+4sinx.cos^2x-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx+2cos^2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2cos^2x+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)