\(x\varepsilon Z\)sao cho \(\sqrt{x^2+x+3}\)có giá trị ng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

\(\sqrt{x^2+x+3}=a\left(a\in Z\right).\)

\(\Rightarrow x^2+x+3=a^2\Leftrightarrow4x^2+4x+12=4a^2\Leftrightarrow\left(2x+1\right)^2-\left(2a\right)^2=-11\)

\(_{\Leftrightarrow\left(2x+1-2a\right)\left(2x+1+2a\right)=-11}\)

Sau đó thì dễ rồi vì a,x nguyên tìm nghiệm của -11 là xong

√x2+x+3=a(a∈Z).

⇒x2+x+3=a2⇔4x2+4x+12=4a2⇔(2x+1)2−(2a)2=−11

⇔(2x+1−2a)(2x+1+2a)=−11

Sau đó thì dễ rồi vì a,x nguyên tìm nghiệm của -11 là xong

14 tháng 6 2017

Để \(\sqrt{x^2+x+3}\) nguyên thì

\(\Rightarrow x^2+x+3=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4x^2+4x+12=4a^2\)

\(\Leftrightarrow4a^2-\left(2x+1\right)^2=11\)

\(\Leftrightarrow\left(2a+2x+1\right)\left(2a-2x-1\right)=11\)

\(\Leftrightarrow\left(2a+2x+1,2a-2x-1\right)=\left(1,11;11,1;-1,-11;-11,-1\right)\)

\(\Leftrightarrow\left(a,x\right)=\left(3,-3;3,2;-3,-3;-3,2\right)\)

Vậy ....

14 tháng 6 2017

a)\(pt\Leftrightarrow\sqrt{x^2-2x+2}+\sqrt{3x^2-6x+4}-2=0\)

\(\Leftrightarrow\sqrt{x^2-2x+2}-1+\sqrt{3x^2-6x+4}-1=0\)

\(\Leftrightarrow\frac{x^2-2x+2-1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+3}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{x^2-2x+2}+1}+\frac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}>0\) (loại)

Nên x-1=0 suy ra x=1

b)\(pt\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}+x^2+2x-5=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+21}-4+x^2+2x+1=0\)

\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+21-16}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)

Dễ thấY: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1>0\) (loại luôn)

Nên x+1=0 suy ra x=-1

19 tháng 1

\(\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\\ =\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\dfrac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(3\sqrt{x}+14\right)}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

19 tháng 1

ĐKXĐ: x ≠ 1/25; x ≥ 0

22 tháng 8 2020
 

Giúp tôi giải toán và làm văn

 
 Tìm kiếm 
 

Tất cảToánVăn - Tiếng ViệtTiếng Anh

Nguyễn Thành Vinh
Nguyễn Thành Vinh
Trả lời
59
 
Đánh dấu

26 tháng 7 2016 lúc 15:48

I don't need nghĩa là gì , đoán đúng cho 10 nghìn ,cấm tra google dịch

Được cập nhật Vài giây trước

Toán lớp 4 Đố vui
 
avt3898343_60by60.jpg
avt588689_60by60.jpgmori ran and kudo sinichi 28 tháng 7 2016 lúc 20:11
Thống kê hỏi đáp
 Báo cáo sai phạm

i don't need la tao ko can

 Đúng 8  Sai 2
avt625280_60by60.jpgsakura 2 tháng 8 2016 lúc 19:21
Thống kê hỏi đáp
 Báo cáo sai phạm

Ôi trời câu hỏi của bạn trờ thành câu trả lời luôn hả ?

 Đúng 5  Sai 0
avt2841037_60by60.jpgNguyễn Quỳnh Ngân 18 tháng 1 2019 lúc 19:52
Thống kê hỏi đáp
 Báo cáo sai phạm

ngu đâu mà trả lời .

hứ

 Đúng 4  Sai 1
Nguyễn Ngọc Linh
Nguyễn Ngọc Linh
Trả lời
3
 
Đánh dấu

10 tháng 3 lúc 14:50

Choa0,b0 Chứng minh bất đẳng thức Cauchy : a+b2 ab

Được cập nhật 2 phút trước

Toán lớp 8
 
avt3898343_60by60.jpg
avt1037271_60by60.jpgミ★NVĐ^^★彡 10 tháng 3 lúc 14:53
Thống kê hỏi đáp
 Báo cáo sai phạm

BĐT tương đương :

a+b2ab

(a+b)24ab

(ab)20 ( luôn đúng )

Vậy ta có đpcm

Dấu "=" xảy ra a=b

Đọc tiếp...
 Đúng 2  Sai 1

B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)    + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(x\ge0\)\(x\ne2;3\))

   = \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=  \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)\(1+\frac{4}{\sqrt{x}-3}\)

để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)

ta có bảng sau

\(\sqrt{x}-3\)                    1            -1           2            -2           4            -4

\(\sqrt{x}\)                            4                 2         5           1          7            -1 (L)

x                                     16                    4      25        1           49

vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }

#mã mã#