\(m\) để 3 đường đồng quy: \(d_1\) :
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

bài toán tương đương hệ (I)\(\left\{\begin{matrix}y=-5x-5\left(1\right)\\y=mx+3\left(2\right)\\y=3x+m\left(3\right)\end{matrix}\right.\) phải có và có duy nhất một nghiệm:

(2) và (3)=> \(m\ne3\) nếu \(m=3\Rightarrow d_2\equiv d_3\)

Rút y từ (1) thế vào (2) và (3)

\(\left\{\begin{matrix}-5x-5=mx+3\\-5x=3x+m\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}\left(m+5\right)x=-8\\8x=-m\end{matrix}\right.\)

Hiển nhiên m=- 5 hệ vô nghiêm=> m khác -5

(II)\(\left\{\begin{matrix}x=-\frac{8}{m+5}\left(5\right)\\x=-\frac{m}{8}\left(6\right)\end{matrix}\right.\)

Hệ (II) có nghiệm =>\(\frac{m}{8}-\frac{8}{m+5}=0\Leftrightarrow m^2+5m-64=0\) giải phương trình trên => nghiệm chú ý m khác {-5,3}

17 tháng 2 2017

cảm ơn ạ ^^ <3

30 tháng 3 2017

a) Xét hệ \(\left\{{}\begin{matrix}4x-10y+1=0\\x+y+2=0\end{matrix}\right.\)

D = 4.1 = 10.1 = -6 ≠ 0

Vậy d1 và d2 cắt nhau

b) Tương tự, ta có: d1 :\(12x-6y+10=0\) ;

d2= \(2x-y-7=0\)

D = 12 . (-1) - (-6).2 = -12 + 12 = 0

Dx = (-6) . (-7) - (-1). 10 = 42 + 10 = 52 ≠ 0

Vậy d1 // d2

c) Tương tự, ta có d1: \(8x+10y-12=0\)

d2:\(4x+5y-6=0\)

D = 8 . 5 - 4 . 10 = 0

Dx = 10. (-6) - (-12) . 5 = 0

Dy = (-12) . 4 - (-6) . 8 = 0

Vậy d1 trùng d2.

2 tháng 4 2016

Xét điểm \(B\left(3+t;-2t\right)\in d_2\). Lấy điểm A sao cho M(1;2) là trung điểm của AB. Khi đó \(A\left(1-t;4+2t\right)\) và 

\(A\in d_1\Leftrightarrow\frac{1-t-3}{3}=\frac{4+2t}{-1}\Leftrightarrow t=-2\)

Do đó B(1;4) và đường thẳng \(\Delta\) cần tìm có phương trình x=1

16 tháng 5 2019

Gọi Z(a;b) là giao điểm của d1 và d2 (a,b khác 0)

a,b là nghiệm của

\(\left\{{}\begin{matrix}y=\left(m+1\right)x+2\\y=2x+1\end{matrix}\right.\)

Thay \(y=\left(m+1\right)x+2\) vào \(y=2x+1\) được \(x=\frac{1}{1-m}=a\)

Thay \(x=\)\(\frac{1}{1-m}\) vào \(y=2x+1\) được \(y=\frac{3-m}{1-m}=b\)

\(ab< 0\Leftrightarrow\frac{1}{1-m}.\frac{3-m}{1-m}< 0\Leftrightarrow m>3\)

AH
Akai Haruma
Giáo viên
2 tháng 6 2020

Lời giải:

Hai đường thẳng trên song song với nhau khi mà\(\left\{\begin{matrix} m\neq 0\\ \frac{m}{1}=\frac{1}{m}\\ m+1\neq 2\end{matrix}\right.\Leftrightarrow m=-1\)