Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
1/ Với \(x=0\Rightarrow y=\pm2\)
\(x=1\Rightarrow y^2=5\Rightarrow\) ko có y nguyên thỏa mãn
Với \(x>1\Rightarrow VT\) lẻ \(\Rightarrow VP\) lẻ \(\Rightarrow y=2k+1\)
\(2^x+2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)
\(\Leftrightarrow2^{x-1}+1=2k\left(k+1\right)\)
Do \(x>1\Rightarrow2^{x-1}\) chẵn \(\Rightarrow VT\) lẻ, mà VP chẵn \(\Rightarrow\) pt vô nghiệm
Vậy pt có nghiệm \(\left\{{}\begin{matrix}x=0\\y=\pm2\end{matrix}\right.\)
2/
- Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow VT=2.2^{2k}+57=2.4^k+57\)
Do \(4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\Rightarrow\left(2.4^k+57\right)\equiv2\left(mod3\right)\)
Mà \(VP=y^2\), luôn có \(\left[{}\begin{matrix}y^2\equiv0\left(mod3\right)\\y^2\equiv1\left(mod3\right)\end{matrix}\right.\) \(\forall y\in Z\Rightarrow\) pt vô nghiệm
- Nếu x chẵn \(\Rightarrow x=2k\) pt trở thành:
\(57=y^2-\left(2^k\right)^2=\left(y-2^k\right)\left(y+2^k\right)\)
Do x; y nguyên dương \(\Rightarrow y+2^k\ge3\Rightarrow y+2^k=\left\{57;19;3\right\}\)
TH1: \(\left\{{}\begin{matrix}y+2^k=57\\y-2^k=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=29\\2^k=28\end{matrix}\right.\) (loại)
TH2: \(\left\{{}\begin{matrix}y+2^k=19\\y-2^k=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=11\\2^k=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=11\\x=6\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}y+2^k=3\\y-2^k=19\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=11\\2^k=-8\end{matrix}\right.\) \(\Rightarrow x=-6< 0\left(l\right)\)
Giả sử p=2, ta có:
\(2=\dfrac{n\left(n+1\right)}{2}-1\)
\(\Leftrightarrow n=2\left(TM\right)\)
Thử xem
p=\(\dfrac{n\left(n+1\right)}{2}-1=\dfrac{n\left(n+1\right)-2}{2}\)
\(\Rightarrow2p=n\left(n+1\right)-2\)
\(\Rightarrow2\left(p+1\right)=n\left(n+1\right)\)
Do \(n\in N\)*
\(\Rightarrow n< n+1\) (1)
Ta có: p là số nguyên tố
\(\Rightarrow p\ge2\Rightarrow p+1\ge3\) (2)
Do p là số nguyên tố, n \(\in N\)* và từ (1), (2)
Nên ta có bảng sau
n+1 | p+1 | 2(p+1) |
n | 2 | 1 |
p | 2 | 0 |
Do p là số nguyên tố nên p=2
Vậy (n;p)\(\in\left\{2;2\right\}\)
\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)
\(M=3\)