K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)

NV
2 tháng 4 2019

1/ Với \(x=0\Rightarrow y=\pm2\)

\(x=1\Rightarrow y^2=5\Rightarrow\) ko có y nguyên thỏa mãn

Với \(x>1\Rightarrow VT\) lẻ \(\Rightarrow VP\) lẻ \(\Rightarrow y=2k+1\)

\(2^x+2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)

\(\Leftrightarrow2^{x-1}+1=2k\left(k+1\right)\)

Do \(x>1\Rightarrow2^{x-1}\) chẵn \(\Rightarrow VT\) lẻ, mà VP chẵn \(\Rightarrow\) pt vô nghiệm

Vậy pt có nghiệm \(\left\{{}\begin{matrix}x=0\\y=\pm2\end{matrix}\right.\)

NV
2 tháng 4 2019

2/

- Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow VT=2.2^{2k}+57=2.4^k+57\)

Do \(4^k\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\Rightarrow\left(2.4^k+57\right)\equiv2\left(mod3\right)\)

\(VP=y^2\), luôn có \(\left[{}\begin{matrix}y^2\equiv0\left(mod3\right)\\y^2\equiv1\left(mod3\right)\end{matrix}\right.\) \(\forall y\in Z\Rightarrow\) pt vô nghiệm

- Nếu x chẵn \(\Rightarrow x=2k\) pt trở thành:

\(57=y^2-\left(2^k\right)^2=\left(y-2^k\right)\left(y+2^k\right)\)

Do x; y nguyên dương \(\Rightarrow y+2^k\ge3\Rightarrow y+2^k=\left\{57;19;3\right\}\)

TH1: \(\left\{{}\begin{matrix}y+2^k=57\\y-2^k=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=29\\2^k=28\end{matrix}\right.\) (loại)

TH2: \(\left\{{}\begin{matrix}y+2^k=19\\y-2^k=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=11\\2^k=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=11\\x=6\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}y+2^k=3\\y-2^k=19\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=11\\2^k=-8\end{matrix}\right.\) \(\Rightarrow x=-6< 0\left(l\right)\)

29 tháng 10 2017

Với n=0 thì Pt trở thành \(m^2=3721\Leftrightarrow m=61\)

Với n>0 thì \(3^n⋮3\), mà \(3722\equiv2\left(mod3\right)\)nên \(m^2\equiv2\left(mod3\right)\)( vô lý)

Vậy pt có cặp nghiệm duy nhất (m;n)=(61;0)

1 tháng 12 2018

Giả sử p=2, ta có:

\(2=\dfrac{n\left(n+1\right)}{2}-1\)

\(\Leftrightarrow n=2\left(TM\right)\)

2 tháng 12 2018

Thử xem

p=\(\dfrac{n\left(n+1\right)}{2}-1=\dfrac{n\left(n+1\right)-2}{2}\)

\(\Rightarrow2p=n\left(n+1\right)-2\)

\(\Rightarrow2\left(p+1\right)=n\left(n+1\right)\)

Do \(n\in N\)*

\(\Rightarrow n< n+1\) (1)

Ta có: p là số nguyên tố

\(\Rightarrow p\ge2\Rightarrow p+1\ge3\) (2)

Do p là số nguyên tố, n \(\in N\)* và từ (1), (2)

Nên ta có bảng sau

n+1 p+1 2(p+1)
n 2 1
p 2 0

Do p là số nguyên tố nên p=2

Vậy (n;p)\(\in\left\{2;2\right\}\)

9 tháng 2 2018

\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)  \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)

\(M=3\)

9 tháng 2 2018

b) \(\sqrt{x}=M\)

\(\Leftrightarrow x=M^2\)

thay vào ta có: 

\(x=3^2\)

\(x=9\)

c) \(M=3\in N\)

\(\Rightarrow x=3\)

d) \(M>1\Leftrightarrow x>1\)