Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên x nhỏ nhất sao cho khi chia x cho 7 được số dư là 4 , chia x cho 11 được số dư là 6
x =7q+4 = 11p +6
=> x + 38 =7q+42 = 11p +44
=> x +38 chia hết cho 7;11
=> x + 38 thuộc BC(7;11)
x nhỏ nhất => x +38 = BCNN(7;11)=7.11 =77
=> x = 77 -38 = 39
Vậy x =39
\(x-4⋮7\Rightarrow2\left(x-4\right)+7=2x-1⋮7\)
\(x-6⋮11\Rightarrow2\left(x-6\right)+11=2x-1⋮11\)
Để x nhỏ nhất
=> 2x-1 là BSC nhỏ nhất của 7 và 11 => 2x-1=77=> x=39
x mod 7 =4 => x-4 mod 7 =0 => x-4 + 42=( x+38) mod 7 =0
x mod 11 =6 => x-6 mod 11 =0=> x-6 +44= (x+38) mod 11 =0
Vậy (x+38) chia hết cho 7 và 11
(x+38) là BSCNN của (7,11)=77
Vậy số cần tìm là x= 77-38= 39
Đáp số x=39
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Ta có: chia x cho 7 dư 4 => x - 4 \(⋮\)7 => x - 4 + 7 . 6 \(⋮\)7 => x + 38 \(⋮\)7
chia x cho 11 dư 6 => x - 6 \(⋮\)11 => x - 6 + 11. 4 \(⋮\)11 => x + 38 \(⋮\)11
=> x + 38 là BC của ( 7; 11)
Có: BCNN ( 7; 11 ) = 77
=> x + 38 thuộc B ( 77) = {0; 77; ...}
Vì x nhỏ nhất => x + 38 = 77 => x = 39.
gọi số cần là x:
có x : 11 dư 6 = > x - 6 chia hết cho 11 => n - 6 + 33 = x + 27 chia hết cho 11
có x 4 dư 1 => x - 1 chia hết cho 4 => x - 1 + 28 = x + 27 chia hết cho 4
có x : 19 dư 11 => x - 11 chia hết cho 19 => x - 11 + 38 = x + 27 chia hết cho 19
x + 27 chia hết cho các số 4;11;19 => x + 27 = BCNN (4;11;19) = 836
vậy x = 836 - 27 = 809
tick nha
Câu hỏi của Đào Hồng Phương - Toán lớp 6 - Học toán với OnlineMath